BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24139430)

  • 1. Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne.
    He S; Wu Q; He Z
    Chemosphere; 2013 Nov; 93(11):2782-8. PubMed ID: 24139430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.
    He S; Wu Q; He Z
    Chemosphere; 2014 Dec; 117():132-8. PubMed ID: 24999226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of GA3 on Plant Physiological Properties, Extraction, Subcellular Distribution and Chemical Forms of Pb in Lolium perenne.
    He S; He Z; Wu Q; Wang L; Zhang X
    Int J Phytoremediation; 2015; 17(12):1153-9. PubMed ID: 25942519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism].
    Wu QL; Wang WC; He SY
    Ying Yong Sheng Tai Xue Bao; 2014 Oct; 25(10):2999-3005. PubMed ID: 25796911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth-Promoting Hormone DA-6 Assists Phytoextraction and Detoxification of Cd by Ryegrass.
    He S; Wu Q; He Z
    Int J Phytoremediation; 2015; 17(1-6):597-603. PubMed ID: 25192325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The improved phytoextraction of lead (Pb) and the growth of maize (Zeamays L.): the role of plant growth regulators (GA3 and IAA) and EDTA alone and in combinations.
    Hadi F; Bano A; Fuller MP
    Chemosphere; 2010 Jun; 80(4):457-62. PubMed ID: 20435330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically enhanced phytoextraction of lead-contaminated soils.
    Perry VR; Krogstad EJ; El-Mayas H; Greipsson S
    Int J Phytoremediation; 2012 Aug; 14(7):703-13. PubMed ID: 22908638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.
    Du RJ; He EK; Tang YT; Hu PJ; Ying RR; Morel JL; Qiu RL
    Int J Phytoremediation; 2011; 13(10):1024-36. PubMed ID: 21972569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil.
    Lambrechts T; Gustot Q; Couder E; Houben D; Iserentant A; Lutts S
    Chemosphere; 2011 Nov; 85(8):1290-8. PubMed ID: 21839490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction.
    Epelde L; Hernández-Allica J; Becerril JM; Blanco F; Garbisu C
    Sci Total Environ; 2008 Aug; 401(1-3):21-8. PubMed ID: 18499230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the efficacy of chelate-assisted phytoextraction of lead by coffeeweed (Sesbania exaltata Raf.).
    Miller G; Begonia G; Begonia M; Ntoni J; Hundley O
    Int J Environ Res Public Health; 2008 Dec; 5(5):428-35. PubMed ID: 19151439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils.
    Saifullah ; Zia MH; Meers E; Ghafoor A; Murtaza G; Sabir M; Zia-Ur-Rehman M; Tack FM
    Chemosphere; 2010 Apr; 79(6):652-8. PubMed ID: 20334894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments.
    Padmavathiamma PK; Li LY
    Bioresour Technol; 2010 Jul; 101(14):5667-76. PubMed ID: 20219365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk.
    Zhao S; Lian F; Duo L
    Bioresour Technol; 2011 Jan; 102(2):621-6. PubMed ID: 20797852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.).
    Saifullah ; Ghafoor A; Zia MH; Murtaza G; Waraich EA; Bibi S; Srivastava P
    Int J Phytoremediation; 2010 Sep; 12(7):633-49. PubMed ID: 21166273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system.
    Liu D; Islam E; Ma J; Wang X; Mahmood Q; Jin X; Li T; Yang X; Gupta D
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):30-5. PubMed ID: 18484226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil.
    Abbas MH; Abdelhafez AA
    Chemosphere; 2013 Jan; 90(2):588-94. PubMed ID: 22990024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.