BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 24139903)

  • 1. Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility.
    Portha B; Fournier A; Kioon MD; Mezger V; Movassat J
    Biochimie; 2014 Feb; 97():1-15. PubMed ID: 24139903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Maternal Diet on the Epigenome during In Utero Life and the Developmental Programming of Diseases in Childhood and Adulthood.
    Lee HS
    Nutrients; 2015 Nov; 7(11):9492-507. PubMed ID: 26593940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes.
    Junien C; Nathanielsz P
    Obes Rev; 2007 Nov; 8(6):487-502. PubMed ID: 17949354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between epigenetic regulation, dietary habits, and the developmental origins of health and disease theory.
    Mochizuki K; Hariya N; Honma K; Goda T
    Congenit Anom (Kyoto); 2017 Nov; 57(6):184-190. PubMed ID: 28169463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of nutrition during early life on the epigenetic regulation of transcription and implications for human diseases.
    Lillycrop KA; Burdge GC
    J Nutrigenet Nutrigenomics; 2011; 4(5):248-60. PubMed ID: 22353662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and DNA methylation regulation in the metabolic syndrome.
    Yara S; Lavoie JC; Levy E
    Epigenomics; 2015; 7(2):283-300. PubMed ID: 25942536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic flexibility in metabolic regulation: disease cause and prevention?
    Kirchner H; Osler ME; Krook A; Zierath JR
    Trends Cell Biol; 2013 May; 23(5):203-9. PubMed ID: 23277089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of global and regional DNA methylation and histone modifications in glycemic traits and type 2 diabetes: A systematic review.
    Muka T; Nano J; Voortman T; Braun KVE; Ligthart S; Stranges S; Bramer WM; Troup J; Chowdhury R; Dehghan A; Franco OH
    Nutr Metab Cardiovasc Dis; 2016 Jul; 26(7):553-566. PubMed ID: 27146363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Epigenetics and Nutrition: maternal nutrition impacts on placental development and health of offspring].
    Panchenko PE; Lemaire M; Fneich S; Voisin S; Jouin M; Junien C; Gabory A
    Biol Aujourdhui; 2015; 209(2):175-87. PubMed ID: 26514387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA methylation: the pivotal interaction between early-life nutrition and glucose metabolism in later life.
    Zheng J; Xiao X; Zhang Q; Yu M
    Br J Nutr; 2014 Dec; 112(11):1850-7. PubMed ID: 25327140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Programming nutritional and metabolic disorders: the diabetic environment during gestation].
    Motte E; Beauval B; Laurent M; Melki I; Schmit A; Vottier G; Mitanchez D
    Arch Pediatr; 2010 Jan; 17(1):60-70. PubMed ID: 19942417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Session 2: Personalised nutrition. Epigenomics: a basis for understanding individual differences?
    Mathers JC
    Proc Nutr Soc; 2008 Nov; 67(4):390-4. PubMed ID: 18847515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early Life Nutrition and Energy Balance Disorders in Offspring in Later Life.
    Reynolds CM; Gray C; Li M; Segovia SA; Vickers MH
    Nutrients; 2015 Sep; 7(9):8090-111. PubMed ID: 26402696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methylation, ageing and the influence of early life nutrition.
    Lillycrop KA; Hoile SP; Grenfell L; Burdge GC
    Proc Nutr Soc; 2014 Aug; 73(3):413-21. PubMed ID: 25027290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The epigenetic regulation of podocyte function in diabetes.
    Majumder S; Advani A
    J Diabetes Complications; 2015; 29(8):1337-44. PubMed ID: 26344726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic reprogramming and imprinting in origins of disease.
    Tang WY; Ho SM
    Rev Endocr Metab Disord; 2007 Jun; 8(2):173-82. PubMed ID: 17638084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.
    McMillen IC; Robinson JS
    Physiol Rev; 2005 Apr; 85(2):571-633. PubMed ID: 15788706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute and long-term nutrient-led modifications of gene expression: potential role of SIRT1 as a central co-ordinator of short and longer-term programming of tissue function.
    Holness MJ; Caton PW; Sugden MC
    Nutrition; 2010 May; 26(5):491-501. PubMed ID: 20097539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic changes in diabetes.
    Keating ST; El-Osta A
    Clin Genet; 2013 Jul; 84(1):1-10. PubMed ID: 23398084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiovascular epigenetics: from DNA methylation to microRNAs.
    Udali S; Guarini P; Moruzzi S; Choi SW; Friso S
    Mol Aspects Med; 2013; 34(4):883-901. PubMed ID: 22981780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.