BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

863 related articles for article (PubMed ID: 24139915)

  • 1. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copolymer-in-oil phantom materials for elastography.
    Oudry J; Bastard C; Miette V; Willinger R; Sandrin L
    Ultrasound Med Biol; 2009 Jul; 35(7):1185-97. PubMed ID: 19427100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between shear wave dispersion magneto motive ultrasound and transient elastography for measuring tissue-mimicking phantom viscoelasticity.
    Almeida TW; Sampaio DR; Bruno AC; Pavan TZ; Carneiro AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2138-45. PubMed ID: 26670853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear wave vibrometry evaluation in transverse isotropic tissue mimicking phantoms and skeletal muscle.
    Aristizabal S; Amador C; Qiang B; Kinnick RR; Nenadic IZ; Greenleaf JF; Urban MW
    Phys Med Biol; 2014 Dec; 59(24):7735-52. PubMed ID: 25419697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms.
    Amador C; Urban MW; Chen S; Chen Q; An KN; Greenleaf JF
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1706-14. PubMed ID: 21317078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach.
    Huang CC; Chen PY; Shih CC
    Med Phys; 2013 Apr; 40(4):042901. PubMed ID: 23556923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method.
    Xie P; Wang M; Guo Y; Wen H; Chen X; Chen S; Lin H
    Technol Health Care; 2018; 26(S1):449-458. PubMed ID: 29758968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Class of Phantom Materials for Poroelastography Imaging Techniques.
    Chaudhry A; Yazdi IK; Kongari R; Tasciotti E; Righetti R
    Ultrasound Med Biol; 2016 May; 42(5):1230-8. PubMed ID: 26806439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion in Tissue-Mimicking Gels Measured with Shear Wave Elastography and Torsional Vibration Rheometry.
    Yengul SS; Barbone PE; Madore B
    Ultrasound Med Biol; 2019 Feb; 45(2):586-604. PubMed ID: 30473175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-specific ultrasound elastography using a multi-layered shear wave dispersion model for assessing the viscoelastic properties.
    Lu G; Li R; Qian X; Chen R; Jiang L; Chen Z; Kirk Shung K; Humayun MS; Zhou Q
    Phys Med Biol; 2021 Jan; 66(3):035003. PubMed ID: 33181500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterial Stiffness Estimation by Shear Wave Elastography: Validation in Phantoms with Mechanical Testing.
    Maksuti E; Widman E; Larsson D; Urban MW; Larsson M; Bjällmark A
    Ultrasound Med Biol; 2016 Jan; 42(1):308-21. PubMed ID: 26454623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of ultrasound stiffness imaging methods using tissue mimicking phantoms.
    Manickam K; Machireddy RR; Seshadri S
    Ultrasonics; 2014 Feb; 54(2):621-31. PubMed ID: 24083832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of viscous and elastic properties of sub-wavelength layered soft tissues using shear wave spectroscopy: theoretical framework and in vitro experimental validation.
    Nguyen TM; Couade M; Bercoff J; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2305-15. PubMed ID: 22083764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying viscosity and elasticity using holographic imaging by Rayleigh wave dispersion.
    Singh A; Pati F; John R
    Opt Lett; 2022 May; 47(9):2214-2217. PubMed ID: 35486763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of liver viscoelasticity with acoustic radiation force: a study of hepatic fibrosis in a rat model.
    Chen X; Shen Y; Zheng Y; Lin H; Guo Y; Zhu Y; Zhang X; Wang T; Chen S
    Ultrasound Med Biol; 2013 Nov; 39(11):2091-102. PubMed ID: 23993170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.