These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24139943)

  • 41. Carrier dynamics in Si nanowires fabricated by metal-assisted chemical etching.
    Tang H; Zhu LG; Zhao L; Zhang X; Shan J; Lee ST
    ACS Nano; 2012 Sep; 6(9):7814-9. PubMed ID: 22891641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel silicon nanohemisphere-array solar cells with enhanced performance.
    Li Y; Yu H; Li J; Wong SM; Sun XW; Li X; Cheng C; Fan HJ; Wang J; Singh N; Lo PG; Kwong DL
    Small; 2011 Nov; 7(22):3138-43. PubMed ID: 21898793
    [No Abstract]   [Full Text] [Related]  

  • 43. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
    Pennanen AM; Toppari JJ
    Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles.
    Kang DJ; Kang H; Cho C; Kim KH; Jeong S; Lee JY; Kim BJ
    Nanoscale; 2013 Mar; 5(5):1858-63. PubMed ID: 23338854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A high efficiency dual-junction solar cell implemented as a nanowire array.
    Yu S; Witzigmann B
    Opt Express; 2013 Jan; 21 Suppl 1():A167-72. PubMed ID: 23389268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanophotonic light trapping in 3-dimensional thin-film silicon architectures.
    Lockau D; Sontheimer T; Becker C; Rudigier-Voigt E; Schmidt F; Rech B
    Opt Express; 2013 Jan; 21 Suppl 1():A42-52. PubMed ID: 23389274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single-walled carbon nanotube/polyaniline/n-silicon solar cells: fabrication, characterization, and performance measurements.
    Tune DD; Flavel BS; Quinton JS; Ellis AV; Shapter JG
    ChemSusChem; 2013 Feb; 6(2):320-7. PubMed ID: 23322677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of highly antireflective silicon surfaces with superhydrophobicity.
    Cao M; Song X; Zhai J; Wang J; Wang Y
    J Phys Chem B; 2006 Jul; 110(26):13072-5. PubMed ID: 16805616
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct metallization local Al-back surface field for high efficiency screen printed crystalline silicon solar cells.
    Lee J; Park C; Dao VA; Lee YJ; Ryu K; Choi G; Kim B; Ju M; Jeong C; Yi J
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7551-5. PubMed ID: 24245290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Titrimetric determination of silicon dissolved in concentrated HF-HNO3-etching solutions.
    Henssge A; Acker J; Müller C
    Talanta; 2006 Jan; 68(3):581-5. PubMed ID: 18970360
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High efficiency graphene solar cells by chemical doping.
    Miao X; Tongay S; Petterson MK; Berke K; Rinzler AG; Appleton BR; Hebard AF
    Nano Lett; 2012 Jun; 12(6):2745-50. PubMed ID: 22554195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity.
    Xiu Y; Zhu L; Hess DW; Wong CP
    Nano Lett; 2007 Nov; 7(11):3388-93. PubMed ID: 17929875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.
    Chen HY; Lu HL; Ren QH; Zhang Y; Yang XF; Ding SJ; Zhang DW
    Nanoscale; 2015 Oct; 7(37):15142-8. PubMed ID: 26243694
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Origin of low sensitizing efficiency of quantum dots in organic solar cells.
    ten Cate S; Schins JM; Siebbeles LD
    ACS Nano; 2012 Oct; 6(10):8983-8. PubMed ID: 22950740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visible to near-infrared sensitization of silicon substrates via energy transfer from proximal nanocrystals: further insights for hybrid photovoltaics.
    Nimmo MT; Caillard LM; De Benedetti W; Nguyen HM; Seitz O; Gartstein YN; Chabal YJ; Malko AV
    ACS Nano; 2013 Apr; 7(4):3236-45. PubMed ID: 23556540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An isolation power supply by phototransmission.
    Takahashi K; Izawa K; Morimoto T
    Front Med Biol Eng; 1992; 4(3):201-8. PubMed ID: 1419919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies.
    Yang Y; Zhang H; Zhu G; Lee S; Lin ZH; Wang ZL
    ACS Nano; 2013 Jan; 7(1):785-90. PubMed ID: 23199138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large-area free-standing ultrathin single-crystal silicon as processable materials.
    Wang S; Weil BD; Li Y; Wang KX; Garnett E; Fan S; Cui Y
    Nano Lett; 2013 Sep; 13(9):4393-8. PubMed ID: 23876030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.