These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24140172)

  • 1. Test-retest reliability of a 3-min isokinetic all-out test using two different cadences.
    de Lucas RD; Greco CC; Dekerle J; Caritá RA; Guglielmo LG; Denadai BS
    J Sci Med Sport; 2014 Nov; 17(6):645-9. PubMed ID: 24140172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of power output during eccentric sprint cycling.
    Brughelli M; Van Leemputte M
    J Strength Cond Res; 2013 Jan; 27(1):76-82. PubMed ID: 22344057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The critical power concept in all-out isokinetic exercise.
    Dekerle J; Barstow TJ; Regan L; Carter H
    J Sci Med Sport; 2014 Nov; 17(6):640-4. PubMed ID: 24183173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No reserve in isokinetic cycling power at intolerance during ramp incremental exercise in endurance-trained men.
    Ferguson C; Wylde LA; Benson AP; Cannon DT; Rossiter HB
    J Appl Physiol (1985); 2016 Jan; 120(1):70-7. PubMed ID: 26565019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity and reliability of the Polar S710 mobile cycling powermeter.
    Millet GP; Tronche C; Fuster N; Bentley DJ; Candau R
    Int J Sports Med; 2003 Apr; 24(3):156-61. PubMed ID: 12740731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of peak oxygen uptake during handcycling: Test-retest reliability and comparison of a ramp-incremented and perceptually-regulated exercise test.
    Hutchinson MJ; Paulson TAW; Eston R; Goosey-Tolfrey VL
    PLoS One; 2017; 12(7):e0181008. PubMed ID: 28704487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Reliability and Validity of the 3-min All-out Cycling Critical Power Test.
    Wright J; Bruce-Low S; Jobson SA
    Int J Sports Med; 2017 Jun; 38(6):462-467. PubMed ID: 28388783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of maximal power output in isokinetic and non-isokinetic cycling. A comparison of two methods.
    Baron R; Bachl N; Petschnig R; Tschan H; Smekal G; Pokan R
    Int J Sports Med; 1999 Nov; 20(8):532-7. PubMed ID: 10606217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of cadence on cycling efficiency and local tissue oxygenation.
    D Jacobs R; E Berg K; Slivka DR; Noble JM
    J Strength Cond Res; 2013 Mar; 27(3):637-42. PubMed ID: 22648142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of differing pedalling speeds on the power-duration relationship of high intensity cycle ergometry.
    McNaughton L; Thomas D
    Int J Sports Med; 1996 May; 17(4):287-92. PubMed ID: 8814511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pedal cadence on the accumulated oxygen deficit, maximal aerobic power and blood lactate transition thresholds of high-performance junior endurance cyclists.
    Woolford SM; Withers RT; Craig NP; Bourdon PC; Stanef T; McKenzie I
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):285-91. PubMed ID: 10483797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Locomotor Fatigue during Supra-critical Power Exercise.
    Swisher AR; Koehn B; Yong S; Cunha J; Ferguson C; Cannon DT
    Med Sci Sports Exerc; 2019 Aug; 51(8):1720-1726. PubMed ID: 30817712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of ankle isometric, isotonic, and isokinetic strength and power testing in older women.
    Webber SC; Porter MM
    Phys Ther; 2010 Aug; 90(8):1165-75. PubMed ID: 20488976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproducibility of variables derived from a 90 s all-out effort isokinetic cycling test.
    Dekerle J; Hammond A; Brickley G; Pringle J; Carter H
    J Sports Med Phys Fitness; 2006 Sep; 46(3):388-94. PubMed ID: 16998442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fatigue on maximal power output at different contraction velocities in humans.
    Beelen A; Sargeant AJ
    J Appl Physiol (1985); 1991 Dec; 71(6):2332-7. PubMed ID: 1778931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences.
    Marsh AP; Martin PE
    Med Sci Sports Exerc; 1997 Sep; 29(9):1225-32. PubMed ID: 9309635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliability of Force-Velocity Tests in Cycling and Cranking Exercises in Men and Women.
    Jaafar H; Attiogbé E; Rouis M; Vandewalle H; Driss T
    Biomed Res Int; 2015; 2015():954780. PubMed ID: 26539544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability of a 3-min all-out Arm Crank Ergometer Exercise Test.
    Flueck JL; Lienert M; Schaufelberger F; Perret C
    Int J Sports Med; 2015 Oct; 36(10):809-13. PubMed ID: 26038881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Cycling Cadence on Respiratory and Hemodynamic Responses to Exercise.
    Mitchell RA; Boyle KG; Ramsook AH; Puyat JH; Henderson WR; Koehle MS; Guenette JA
    Med Sci Sports Exerc; 2019 Aug; 51(8):1727-1735. PubMed ID: 30817718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of a Protocol to Elicit Peak Measures Generated by the Lower Limb for Semi-recumbent Eccentric Cycling.
    Walsh JA; Stapley PJ; Shemmell J; McAndrew DJ
    Front Sports Act Living; 2021; 3():653699. PubMed ID: 34027403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.