These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 241402)

  • 1. Reactivation and aging of diphenyl phosphoryl acetylcholinesterase.
    Maglothin JA; Wins P; Wilson IB
    Biochim Biophys Acta; 1975 Oct; 403(2):370-87. PubMed ID: 241402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous reactivation of acetylcholinesterase following organophosphate inhibition. I. An analysis of anomalous reactivation kinetics.
    Hovanec JW; Broomfield CA; Steinberg GM; Lanks KW; Lieske CN
    Biochim Biophys Acta; 1977 Aug; 483(2):312-9. PubMed ID: 19068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Equilibrium constants for the phosphorylation of acetylcholinesterase by some diethyl phosphorothiolates and phosphates.
    Maglothin JA; Wilson IB
    Biochemistry; 1974 Aug; 13(17):3520-7. PubMed ID: 4858711
    [No Abstract]   [Full Text] [Related]  

  • 4. Aging of soman-inhibited acetylcholinesterase: inhibitors and accelerators.
    Schoene K
    Biochim Biophys Acta; 1978 Aug; 525(2):468-71. PubMed ID: 687642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH effects in the spontaneous reactivation of phosphinylated acetylcholinesterase.
    Lieske CN; Gessner CE; Gepp RT; Clark JH; Meyer HG; Broomfield CA
    Life Sci; 1990; 46(17):1189-96. PubMed ID: 2338884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches.
    Mangas I; Taylor P; Vilanova E; Estévez J; França TC; Komives E; Radić Z
    Arch Toxicol; 2016 Mar; 90(3):603-16. PubMed ID: 25743373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous reactivation of acetylcholinesterase following organophosphate inhibition. II. Characterization of the reactivating components.
    Lanks KW; Lieske CN; Papirmeister B
    Biochim Biophys Acta; 1977 Aug; 483(2):320-30. PubMed ID: 560865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous reactivation of acetylcholinesterase inhibited with para-substituted phenyl methylphosphonochloridates.
    Hovanec JW; Lieske CN
    Biochemistry; 1972 Mar; 11(6):1051-6. PubMed ID: 5062537
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphoryl oxime inhibition of acetylcholinesterase during oxime reactivation is prevented by edrophonium.
    Luo C; Saxena A; Smith M; Garcia G; Radić Z; Taylor P; Doctor BP
    Biochemistry; 1999 Aug; 38(31):9937-47. PubMed ID: 10433700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry.
    Jennings LL; Malecki M; Komives EA; Taylor P
    Biochemistry; 2003 Sep; 42(37):11083-91. PubMed ID: 12974645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of oxime reactivators with diethylphosphoryl adducts of human acetylcholinesterase and its mutant derivatives.
    Grosfeld H; Barak D; Ordentlich A; Velan B; Shafferman A
    Mol Pharmacol; 1996 Sep; 50(3):639-49. PubMed ID: 8794905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of ageing of phosphonylated acetylcholinesterase.
    Sun M; Chang Z; Shau M; Huang R; Chou T
    Eur J Biochem; 1979 Oct; 100(2):527-30. PubMed ID: 510296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification of acetylcholinesterase by covalent affinity chromatography.
    Voss HF; Ashani Y; Wilson IB
    Adv Exp Med Biol; 1974; 42(0):75-83. PubMed ID: 4843798
    [No Abstract]   [Full Text] [Related]  

  • 14. The mode of binding of potential transition-state analogs to acetylcholinesterase.
    Dafforn A; Anderson M; Ash D; Campagna J; Daniel E; Horwood R; Kerr P; Rych G; Zappitelli F
    Biochim Biophys Acta; 1977 Oct; 484(2):375-85. PubMed ID: 20963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The arrangement of substrate and organophosphorus-inhibitor leaving groups in acetylcholinesterase active site.
    Järv J; Aaviksaar A; Godovikov N; Lobanov D
    Biochem J; 1977 Dec; 167(3):823-5. PubMed ID: 603636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spectrophotometric assay for determining the rate constants of acetylcholinesterase inhibitions.
    Stoops JK; Bender ML
    Anal Biochem; 1975 Feb; 63(2):543-54. PubMed ID: 235858
    [No Abstract]   [Full Text] [Related]  

  • 17. Acceleration of oxime-induced reactivation of organophosphate-inhibited fetal bovine serum acetylcholinesterase by monoquaternary and bisquaternary ligands.
    Luo C; Ashani Y; Doctor BP
    Mol Pharmacol; 1998 Apr; 53(4):718-26. PubMed ID: 9547363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of reversible ligands on oxime-induced reactivation of sarin- and cyclosarin-inhibited human acetylcholinesterase.
    Scheffel C; Thiermann H; Worek F
    Toxicol Lett; 2015 Feb; 232(3):557-65. PubMed ID: 25522658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensational phenomena in reactivation of dimethyl- and diethylphosphoryl butyrylcholinesterases.
    Wang IC; Braid PE
    Biochim Biophys Acta; 1977 Apr; 481(2):515-25. PubMed ID: 15610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphylation kinetic constants and oxime-induced reactivation in acetylcholinesterase from fetal bovine serum, bovine caudate nucleus, and electric eel.
    Hanke DW; Overton MA
    J Toxicol Environ Health; 1991 Sep; 34(1):141-56. PubMed ID: 1890690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.