BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 24140290)

  • 1. Impact of different CO2/HCO3- levels on metabolism and regulation in Corynebacterium glutamicum.
    Blombach B; Buchholz J; Busche T; Kalinowski J; Takors R
    J Biotechnol; 2013 Dec; 168(4):331-40. PubMed ID: 24140290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of CO
    Krüger A; Wiechert J; Gätgens C; Polen T; Mahr R; Frunzke J
    J Bacteriol; 2019 Oct; 201(20):. PubMed ID: 31358612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum.
    Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A
    BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Iron Deficiency Response of Corynebacterium glutamicum and a Link to Thiamine Biosynthesis.
    Küberl A; Mengus-Kaya A; Polen T; Bott M
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32144105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol catabolism in Corynebacterium glutamicum.
    Arndt A; Auchter M; Ishige T; Wendisch VF; Eikmanns BJ
    J Mol Microbiol Biotechnol; 2008; 15(4):222-33. PubMed ID: 17693703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO₂ /HCO₃⁻ perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum.
    Buchholz J; Graf M; Freund A; Busche T; Kalinowski J; Blombach B; Takors R
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8563-72. PubMed ID: 25139448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules.
    Rückert C; Milse J; Albersmeier A; Koch DJ; Pühler A; Kalinowski J
    BMC Genomics; 2008 Oct; 9():483. PubMed ID: 18854009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The DtxR regulon of Corynebacterium glutamicum.
    Wennerhold J; Bott M
    J Bacteriol; 2006 Apr; 188(8):2907-18. PubMed ID: 16585752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum.
    Blombach B; Cramer A; Eikmanns BJ; Schreiner M
    J Mol Microbiol Biotechnol; 2009; 16(3-4):236-9. PubMed ID: 17890844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.
    Blombach B; Schreiner ME; Moch M; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):615-23. PubMed ID: 17333167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corynebacterium glutamicum tailored for high-yield L-valine production.
    Blombach B; Schreiner ME; Bartek T; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):471-9. PubMed ID: 18379776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase.
    Brockmann-Gretza O; Kalinowski J
    BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production.
    Lai S; Zhang Y; Liu S; Liang Y; Shang X; Chai X; Wen T
    Sci China Life Sci; 2012 Apr; 55(4):283-90. PubMed ID: 22566084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of riboflavin production with Bacillus subtilis by expression and site-directed mutagenesis of zwf and gnd gene from Corynebacterium glutamicum.
    Wang Z; Chen T; Ma X; Shen Z; Zhao X
    Bioresour Technol; 2011 Feb; 102(4):3934-40. PubMed ID: 21194928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum.
    Panhorst M; Sorger-Herrmann U; Wendisch VF
    J Biotechnol; 2011 Jul; 154(2-3):149-55. PubMed ID: 20638427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum.
    Cramer A; Gerstmeir R; Schaffer S; Bott M; Eikmanns BJ
    J Bacteriol; 2006 Apr; 188(7):2554-67. PubMed ID: 16547043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Corynebacterium glutamicum for the production of pyruvate.
    Wieschalka S; Blombach B; Eikmanns BJ
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):449-59. PubMed ID: 22228312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Müller F; Rapp J; Hacker AL; Feith A; Takors R; Blombach B
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of elevated dissolved carbon dioxide concentrations on growth of Corynebacterium glutamicum on D-glucose and L-lactate.
    Bäumchen C; Knoll A; Husemann B; Seletzky J; Maier B; Dietrich C; Amoabediny G; Büchs J
    J Biotechnol; 2007 Mar; 128(4):868-74. PubMed ID: 17275119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C1 metabolism in Corynebacterium glutamicum: an endogenous pathway for oxidation of methanol to carbon dioxide.
    Witthoff S; Mühlroth A; Marienhagen J; Bott M
    Appl Environ Microbiol; 2013 Nov; 79(22):6974-83. PubMed ID: 24014532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.