These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 24140290)
21. Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Netzer R; Krause M; Rittmann D; Peters-Wendisch PG; Eggeling L; Wendisch VF; Sahm H Arch Microbiol; 2004 Nov; 182(5):354-63. PubMed ID: 15375646 [TBL] [Abstract][Full Text] [Related]
22. The alternative sigma factor SigB of Corynebacterium glutamicum modulates global gene expression during transition from exponential growth to stationary phase. Larisch C; Nakunst D; Hüser AT; Tauch A; Kalinowski J BMC Genomics; 2007 Jan; 8():4. PubMed ID: 17204139 [TBL] [Abstract][Full Text] [Related]
23. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Jojima T; Fujii M; Mori E; Inui M; Yukawa H Appl Microbiol Biotechnol; 2010 Jun; 87(1):159-65. PubMed ID: 20217078 [TBL] [Abstract][Full Text] [Related]
24. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Engels S; Ludwig C; Schweitzer JE; Mack C; Bott M; Schaffer S Mol Microbiol; 2005 Jul; 57(2):576-91. PubMed ID: 15978086 [TBL] [Abstract][Full Text] [Related]
25. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Krömer JO; Bolten CJ; Heinzle E; Schröder H; Wittmann C Microbiology (Reading); 2008 Dec; 154(Pt 12):3917-3930. PubMed ID: 19047758 [TBL] [Abstract][Full Text] [Related]
26. Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Ko YJ; Joo YC; Hyeon JE; Lee E; Lee ME; Seok J; Kim SW; Park C; Han SO Sci Rep; 2018 Sep; 8(1):14460. PubMed ID: 30262872 [TBL] [Abstract][Full Text] [Related]
27. Diversity of metabolic shift in response to oxygen deprivation in Corynebacterium glutamicum and its close relatives. Yamamoto S; Sakai M; Inui M; Yukawa H Appl Microbiol Biotechnol; 2011 May; 90(3):1051-61. PubMed ID: 21327408 [TBL] [Abstract][Full Text] [Related]
28. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032. Brune I; Götker S; Schneider J; Rodionov DA; Tauch A J Biotechnol; 2012 Jun; 159(3):225-34. PubMed ID: 22178235 [TBL] [Abstract][Full Text] [Related]
29. Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum. Ma Y; Cui Y; Du L; Liu X; Xie X; Chen N Microb Cell Fact; 2018 Nov; 17(1):185. PubMed ID: 30474553 [TBL] [Abstract][Full Text] [Related]
30. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Sahm H; Eggeling L; de Graaf AA Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021 [TBL] [Abstract][Full Text] [Related]
31. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
32. The RamA regulon: complex regulatory interactions in relation to central metabolism in Corynebacterium glutamicum. Shah A; Blombach B; Gauttam R; Eikmanns BJ Appl Microbiol Biotechnol; 2018 Jul; 102(14):5901-5910. PubMed ID: 29804137 [TBL] [Abstract][Full Text] [Related]
34. Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. Park SY; Moon MW; Subhadra B; Lee JK FEMS Microbiol Lett; 2010 Mar; 304(2):107-15. PubMed ID: 20377641 [TBL] [Abstract][Full Text] [Related]
35. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. Kohl TA; Tauch A J Biotechnol; 2009 Sep; 143(4):239-46. PubMed ID: 19665500 [TBL] [Abstract][Full Text] [Related]
36. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Rey DA; Nentwich SS; Koch DJ; Rückert C; Pühler A; Tauch A; Kalinowski J Mol Microbiol; 2005 May; 56(4):871-87. PubMed ID: 15853877 [TBL] [Abstract][Full Text] [Related]
37. Transcriptional Regulation of the β-Type Carbonic Anhydrase Gene bca by RamA in Corynebacterium glutamicum. Shah A; Eikmanns BJ PLoS One; 2016; 11(4):e0154382. PubMed ID: 27119954 [TBL] [Abstract][Full Text] [Related]
38. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234 [TBL] [Abstract][Full Text] [Related]
39. Anaerobic growth of Corynebacterium glutamicum via mixed-acid fermentation. Michel A; Koch-Koerfges A; Krumbach K; Brocker M; Bott M Appl Environ Microbiol; 2015 Nov; 81(21):7496-508. PubMed ID: 26276118 [TBL] [Abstract][Full Text] [Related]
40. The effect of AmtR on growth and amino acids production in Corynebacterium glutamicum. Hao N; Yan M; Zhou H; Liu HM; Cai P; Ouyang PK Prikl Biokhim Mikrobiol; 2010; 46(6):611-6. PubMed ID: 21254728 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]