These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 24140625)

  • 1. Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid.
    Zeng H; Xu J; Gillen J; McMahon MT; Artemov D; Tyburn JM; Lohman JAB; Mewis RE; Atkinson KD; Green GGR; Duckett SB; van Zijl PCM
    J Magn Reson; 2013 Dec; 237(100):73-78. PubMed ID: 24140625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving High
    Norcott P; Rayner PJ; Green GGR; Duckett SB
    Chemistry; 2017 Dec; 23(67):16990-16997. PubMed ID: 28990279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalyst-Substrate Effects on Biocompatible SABRE Hyperpolarization.
    Manoharan A; Rayner PJ; Fekete M; Iali W; Norcott P; Hugh Perry V; Duckett SB
    Chemphyschem; 2019 Jan; 20(2):285-294. PubMed ID: 30395699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous
    Kiryutin AS; Yurkovskaya AV; Petrov PA; Ivanov KL
    Magn Reson Chem; 2021 Dec; 59(12):1216-1224. PubMed ID: 34085303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ SABRE Hyperpolarization with Earth's Field NMR Detection.
    Hill-Casey F; Sakho A; Mohammed A; Rossetto M; Ahwal F; Duckett SB; John RO; Richardson PM; Virgo R; Halse ME
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31739621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperpolarization of Nitrile Compounds Using Signal Amplification by Reversible Exchange.
    Kim S; Min S; Chae H; Jeong HJ; Namgoong SK; Oh S; Jeong K
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32717970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T).
    Barskiy DA; Kovtunov KV; Koptyug IV; He P; Groome KA; Best QA; Shi F; Goodson BM; Shchepin RV; Coffey AM; Waddell KW; Chekmenev EY
    J Am Chem Soc; 2014 Mar; 136(9):3322-5. PubMed ID: 24528143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization.
    Barskiy DA; Knecht S; Yurkovskaya AV; Ivanov KL
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():33-70. PubMed ID: 31779885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Complex Mixtures by Chemosensing NMR Using
    Fraser R; Rutjes FPJT; Feiters MC; Tessari M
    Acc Chem Res; 2022 Jul; 55(13):1832-1844. PubMed ID: 35709417
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Truong ML; Theis T; Coffey AM; Shchepin RV; Waddell KW; Shi F; Goodson BM; Warren WS; Chekmenev EY
    J Phys Chem C Nanomater Interfaces; 2015 Apr; 119(16):8786-8797. PubMed ID: 25960823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in situ spectroscopy and high-field imaging.
    Hövener JB; Schwaderlapp N; Borowiak R; Lickert T; Duckett SB; Mewis RE; Adams RW; Burns MJ; Highton LA; Green GG; Olaru A; Hennig J; von Elverfeldt D
    Anal Chem; 2014 Feb; 86(3):1767-74. PubMed ID: 24397559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperpolarization of common antifungal agents with SABRE.
    MacCulloch K; Tomhon P; Browning A; Akeroyd E; Lehmkuhl S; Chekmenev EY; Theis T
    Magn Reson Chem; 2021 Dec; 59(12):1225-1235. PubMed ID: 34121211
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Kiryutin AS; Yurkovskaya AV; Ivanov KL
    Chemphyschem; 2021 Jul; 22(14):1470-1477. PubMed ID: 34009704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE).
    Pravdivtsev AN; Hövener JB
    Chemistry; 2019 Jun; 25(32):7659-7668. PubMed ID: 30689237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic explanation to the catalysis by pyrazinamide and ethambutol of reaction between rifampicin and isoniazid in anti-TB FDCs.
    Bhutani H; Singh S; Jindal KC; Chakraborti AK
    J Pharm Biomed Anal; 2005 Oct; 39(5):892-9. PubMed ID: 15978767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration.
    Goicoechea HC; Olivieri AC
    J Pharm Biomed Anal; 1999 Aug; 20(4):681-6. PubMed ID: 10704137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE).
    Moreno KX; Nasr K; Milne M; Sherry AD; Goux WJ
    J Magn Reson; 2015 Aug; 257():15-23. PubMed ID: 26037136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural networks to optimize formulation components of a fixed-dose combination of rifampicin, isoniazid and pyrazinamide in a microemulsion.
    Glass BD; Agatonovic-Kustrin S; Wisch MH
    Curr Drug Discov Technol; 2005 Sep; 2(3):195-201. PubMed ID: 16472228
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Salnikov OG; Chukanov NV; Svyatova A; Trofimov IA; Kabir MSH; Gelovani JG; Kovtunov KV; Koptyug IV; Chekmenev EY
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2406-2413. PubMed ID: 33063407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal.
    Battini S; Mannava MKC; Nangia A
    J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.