These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 24140786)
1. Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate. Thornley JH; Parsons AJ J Theor Biol; 2014 Feb; 342():1-14. PubMed ID: 24140786 [TBL] [Abstract][Full Text] [Related]
2. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries. Nazeri NK; Lambers H; Tibbett M; Ryan MH Plant Cell Environ; 2014 Apr; 37(4):911-21. PubMed ID: 24112081 [TBL] [Abstract][Full Text] [Related]
3. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Chen B; Zhu YG; Zhang X; Jakobsen I Environ Sci Pollut Res Int; 2005 Nov; 12(6):325-31. PubMed ID: 16305138 [TBL] [Abstract][Full Text] [Related]
4. Arbuscular mycorrhiza reduces phytoextraction of uranium, thorium and other elements from phosphate rock. Roos P; Jakobsen I J Environ Radioact; 2008 May; 99(5):811-9. PubMed ID: 18069100 [TBL] [Abstract][Full Text] [Related]
5. [Nitrogen metabolism and translocation in arbuscular mycorrhizal symbiote and its ecological implications]. Li YJ; Liu ZL; He XY; Tian CJ Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):861-8. PubMed ID: 23755506 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. CorrĂȘa A; Cruz C; Ferrol N Mycorrhiza; 2015 Oct; 25(7):499-515. PubMed ID: 25681010 [TBL] [Abstract][Full Text] [Related]
7. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Smith SE; Smith FA Annu Rev Plant Biol; 2011; 62():227-50. PubMed ID: 21391813 [TBL] [Abstract][Full Text] [Related]
8. [Metabolism and interaction of C and N in the arbuscular mycorrhizal symbiosis]. Li YJ; Liu ZL; He XY; Tian CJ Ying Yong Sheng Tai Xue Bao; 2014 Mar; 25(3):903-10. PubMed ID: 24984513 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen addition and defoliation alter belowground carbon allocation with consequences for plant nitrogen uptake and soil organic carbon decomposition. Bicharanloo B; Bagheri Shirvan M; Cavagnaro TR; Keitel C; Dijkstra FA Sci Total Environ; 2022 Nov; 846():157430. PubMed ID: 35863579 [TBL] [Abstract][Full Text] [Related]
10. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Chalot M; Blaudez D; Brun A Trends Plant Sci; 2006 Jun; 11(6):263-6. PubMed ID: 16697245 [TBL] [Abstract][Full Text] [Related]
11. Mycorrhiza and root hairs in barley enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. Chen B; Roos P; Borggaard OK; Zhu YG; Jakobsen I New Phytol; 2005 Feb; 165(2):591-8. PubMed ID: 15720669 [TBL] [Abstract][Full Text] [Related]
12. Atmospheric CO(2) and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. Gavito ME; Curtis PS; Mikkelsen TN; Jakobsen I J Exp Bot; 2000 Nov; 51(352):1931-8. PubMed ID: 11113171 [TBL] [Abstract][Full Text] [Related]
13. Relationships among three pathways for resource acquisition and their contribution to plant performance in the emergent aquatic Plant Lythrum salicaria (L.). Stevens KJ; Peterson RL Plant Biol (Stuttg); 2007 Nov; 9(6):758-65. PubMed ID: 17538864 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. Torres Aquino M; Plassard C FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398 [TBL] [Abstract][Full Text] [Related]
15. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chen X; Wu C; Tang J; Hu S Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805 [TBL] [Abstract][Full Text] [Related]
16. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants. Zhao B; Jia X; Yu N; Murray JD; Yi K; Wang E New Phytol; 2024 May; 242(4):1507-1522. PubMed ID: 37715479 [TBL] [Abstract][Full Text] [Related]
17. How do plants respond to nutrient shortage by biomass allocation? Hermans C; Hammond JP; White PJ; Verbruggen N Trends Plant Sci; 2006 Dec; 11(12):610-7. PubMed ID: 17092760 [TBL] [Abstract][Full Text] [Related]
18. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Garcia K; Doidy J; Zimmermann SD; Wipf D; Courty PE Trends Plant Sci; 2016 Nov; 21(11):937-950. PubMed ID: 27514454 [TBL] [Abstract][Full Text] [Related]
19. Symbiotic phosphate transport in arbuscular mycorrhizas. Karandashov V; Bucher M Trends Plant Sci; 2005 Jan; 10(1):22-9. PubMed ID: 15642520 [TBL] [Abstract][Full Text] [Related]
20. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA; Rahm J; Aliasgharzad N FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]