These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24140848)

  • 21. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water.
    Xu C; Lancaster J
    Water Res; 2008 Mar; 42(6-7):1571-82. PubMed ID: 18048075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.
    Yin S; Dolan R; Harris M; Tan Z
    Bioresour Technol; 2010 May; 101(10):3657-64. PubMed ID: 20083403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution.
    Karagöz S; Bhaskar T; Muto A; Sakata Y
    Bioresour Technol; 2006 Jan; 97(1):90-8. PubMed ID: 15878657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic citric acid-surfactant catalyzed hydrothermal liquefaction of pomelo peel for production of hydrocarbon-rich bio-oil.
    Wei Y; Fakudze S; Yang S; Zhang Y; Xue T; Han J; Chen J
    Sci Total Environ; 2023 Jan; 857(Pt 1):159235. PubMed ID: 36208756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene.
    Solak A; Rutkowski P
    Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of degraded cellulose obtained from steam-exploded wheat straw.
    Sun XF; Xu F; Sun RC; Fowler P; Baird MS
    Carbohydr Res; 2005 Jan; 340(1):97-106. PubMed ID: 15620672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of catalysts.
    Mazaheri H; Lee KT; Bhatia S; Mohamed AR
    Bioresour Technol; 2010 Jan; 101(2):745-51. PubMed ID: 19740652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst.
    Yang C; Jia L; Chen C; Liu G; Fang W
    Bioresour Technol; 2011 Mar; 102(6):4580-4. PubMed ID: 21262568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elucidation of the thermal deterioration mechanism of bio-oil pyrolyzed from rice husk using Fourier transform infrared spectroscopy.
    Xu F; Xu Y; Lu R; Sheng GP; Yu HQ
    J Agric Food Chem; 2011 Sep; 59(17):9243-9. PubMed ID: 21790186
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of poplar into bio-oil via subcritical hydrothermal liquefaction: Structure and antioxidant capacity.
    Wu XF; Zhou Q; Li MF; Li SX; Bian J; Peng F
    Bioresour Technol; 2018 Dec; 270():216-222. PubMed ID: 30218938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study.
    Fermanelli CS; Córdoba A; Pierella LB; Saux C
    Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis.
    Zhuang Y; Guo J; Chen L; Li D; Liu J; Ye N
    Bioresour Technol; 2012 Jul; 116():133-9. PubMed ID: 22609667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp.
    Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA
    Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.
    Gong F; Yang Z; Hong C; Huang W; Ning S; Zhang Z; Xu Y; Li Q
    Bioresour Technol; 2011 Oct; 102(19):9247-54. PubMed ID: 21807503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Model Study to Unravel the Complexity of Bio-Oil from Organic Wastes.
    Croce A; Battistel E; Chiaberge S; Spera S; De Angelis F; Reale S
    ChemSusChem; 2017 Jan; 10(1):171-181. PubMed ID: 28004532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5.
    Xu Y; Zheng X; Yu H; Hu X
    Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste.
    Cao JP; Xiao XB; Zhang SY; Zhao XY; Sato K; Ogawa Y; Wei XY; Takarada T
    Bioresour Technol; 2011 Jan; 102(2):2009-15. PubMed ID: 20943376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents.
    Mazaheri H; Lee KT; Bhatia S; Mohamed AR
    Bioresour Technol; 2010 Oct; 101(19):7641-7. PubMed ID: 20510608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotransformation of wheat straw to bacterial cellulose and its mechanism.
    Chen L; Hong F; Yang XX; Han SF
    Bioresour Technol; 2013 May; 135():464-8. PubMed ID: 23186663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fractionation of triticale, wheat, barley, oats, canola, and mustard straws for the production of carbohydrates and lignins.
    Pronyk C; Mazza G
    Bioresour Technol; 2012 Feb; 106():117-24. PubMed ID: 22197077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.