These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 24140849)
1. Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH. Li XM; Cheng KY; Wong JW Bioresour Technol; 2013 Dec; 149():452-8. PubMed ID: 24140849 [TBL] [Abstract][Full Text] [Related]
2. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation. Choi J; Ahn Y Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127 [TBL] [Abstract][Full Text] [Related]
3. Effects of evolving quality of landfill leachate on microbial fuel cell performance. Li S; Chen G Waste Manag Res; 2018 Jan; 36(1):59-67. PubMed ID: 29126378 [TBL] [Abstract][Full Text] [Related]
4. Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Özkaya B; Cetinkaya AY; Cakmakci M; Karadağ D; Sahinkaya E Bioprocess Biosyst Eng; 2013 Apr; 36(4):399-405. PubMed ID: 22903571 [TBL] [Abstract][Full Text] [Related]
5. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985 [TBL] [Abstract][Full Text] [Related]
6. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Lefebvre O; Tan Z; Kharkwal S; Ng HY Bioresour Technol; 2012 May; 112():336-40. PubMed ID: 22414574 [TBL] [Abstract][Full Text] [Related]
7. Performance of denitrifying microbial fuel cell subjected to variation in pH, COD concentration and external resistance. Li JT; Zhang SH; Hua YM Water Sci Technol; 2013; 68(1):250-6. PubMed ID: 23823562 [TBL] [Abstract][Full Text] [Related]
8. Acidogenic fermentation of municipal solid waste and its application to bio-electricity production via microbial fuel cells (MfCs). Cavdar P; Yilmaz E; Tugtas AE; Calli B Water Sci Technol; 2011; 64(4):789-95. PubMed ID: 22097062 [TBL] [Abstract][Full Text] [Related]
9. Coupling bioelectricity generation and oil sands tailings treatment using microbial fuel cells. Jiang Y; Ulrich AC; Liu Y Bioresour Technol; 2013 Jul; 139():349-54. PubMed ID: 23669071 [TBL] [Abstract][Full Text] [Related]
10. A comparison of reactor configuration using a fruit waste fed two-stage anaerobic up-flow leachate reactor microbial fuel cell and a single-stage microbial fuel cell. Zafar H; Peleato N; Roberts D Bioresour Technol; 2023 Apr; 374():128778. PubMed ID: 36841397 [TBL] [Abstract][Full Text] [Related]
11. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell. Mahmoud M; Parameswaran P; Torres CI; Rittmann BE Bioresour Technol; 2014 Jan; 151():151-8. PubMed ID: 24231265 [TBL] [Abstract][Full Text] [Related]
12. Carbon Neutral Electricity Production from Municipal Solid Waste Landfill Leachate Using Algal-Assisted Microbial Fuel Cell. Lakshmidevi R; Gandhi NN; Muthukumar K Appl Biochem Biotechnol; 2020 Jun; 191(2):852-866. PubMed ID: 31907780 [TBL] [Abstract][Full Text] [Related]
13. Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Yu J; Seon J; Park Y; Cho S; Lee T Bioresour Technol; 2012 Aug; 117():172-9. PubMed ID: 22613893 [TBL] [Abstract][Full Text] [Related]
14. Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Puig S; Serra M; Coma M; Cabré M; Balaguer MD; Colprim J Bioresour Technol; 2010 Dec; 101(24):9594-9. PubMed ID: 20702091 [TBL] [Abstract][Full Text] [Related]
15. Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells. Damiano L; Jambeck JR; Ringelberg DB Appl Biochem Biotechnol; 2014 May; 173(2):472-85. PubMed ID: 24671566 [TBL] [Abstract][Full Text] [Related]
16. Bioelectricity production from fermentable household waste in a dual-chamber microbial fuel cell. Chatzikonstantinou D; Tremouli A; Papadopoulou K; Kanellos G; Lampropoulos I; Lyberatos G Waste Manag Res; 2018 Nov; 36(11):1037-1042. PubMed ID: 30198400 [TBL] [Abstract][Full Text] [Related]
17. Bioelectricity generation in continuously-fed microbial fuel cell: effects of anode electrode material and hydraulic retention time. Akman D; Cirik K; Ozdemir S; Ozkaya B; Cinar O Bioresour Technol; 2013 Dec; 149():459-64. PubMed ID: 24140850 [TBL] [Abstract][Full Text] [Related]
18. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell. Pant D; Arslan D; Van Bogaert G; Gallego YA; De Wever H; Diels L; Vanbroekhoven K Environ Technol; 2013; 34(13-16):1935-45. PubMed ID: 24350447 [TBL] [Abstract][Full Text] [Related]
19. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity. Mohan SV; Chandrasekhar K Bioresour Technol; 2011 Jul; 102(14):7077-85. PubMed ID: 21570830 [TBL] [Abstract][Full Text] [Related]
20. Optimizing the performance of microbial fuel cells fed a combination of different synthetic organic fractions in municipal solid waste. Pendyala B; Chaganti SR; Lalman JA; Heath DD Waste Manag; 2016 Mar; 49():73-82. PubMed ID: 26777306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]