These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
457 related articles for article (PubMed ID: 24140857)
1. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857 [TBL] [Abstract][Full Text] [Related]
2. Microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production by acid catalysis. Zhuang Y; Guo J; Chen L; Li D; Liu J; Ye N Bioresour Technol; 2012 Jul; 116():133-9. PubMed ID: 22609667 [TBL] [Abstract][Full Text] [Related]
3. Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels. Duan P; Jin B; Xu Y; Yang Y; Bai X; Wang F; Zhang L; Miao J Bioresour Technol; 2013 Apr; 133():197-205. PubMed ID: 23425587 [TBL] [Abstract][Full Text] [Related]
4. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493 [TBL] [Abstract][Full Text] [Related]
5. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Vardon DR; Sharma BK; Blazina GV; Rajagopalan K; Strathmann TJ Bioresour Technol; 2012 Apr; 109():178-87. PubMed ID: 22285293 [TBL] [Abstract][Full Text] [Related]
6. Hydrothermal processing of duckweed: effect of reaction conditions on product distribution and composition. Duan P; Chang Z; Xu Y; Bai X; Wang F; Zhang L Bioresour Technol; 2013 May; 135():710-9. PubMed ID: 23021946 [TBL] [Abstract][Full Text] [Related]
7. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
8. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
9. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Cao L; Zhang C; Hao S; Luo G; Zhang S; Chen J Bioresour Technol; 2016 Nov; 220():471-478. PubMed ID: 27611031 [TBL] [Abstract][Full Text] [Related]
10. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Du Z; Mohr M; Ma X; Cheng Y; Lin X; Liu Y; Zhou W; Chen P; Ruan R Bioresour Technol; 2012 Sep; 120():13-8. PubMed ID: 22776260 [TBL] [Abstract][Full Text] [Related]
11. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Xu Y; Zheng X; Yu H; Hu X Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700 [TBL] [Abstract][Full Text] [Related]
12. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil. Yin S; Dolan R; Harris M; Tan Z Bioresour Technol; 2010 May; 101(10):3657-64. PubMed ID: 20083403 [TBL] [Abstract][Full Text] [Related]
13. Characterization of bio-oil from hydrothermal liquefaction of organic waste by NMR spectroscopy and FTICR mass spectrometry. Leonardis I; Chiaberge S; Fiorani T; Spera S; Battistel E; Bosetti A; Cesti P; Reale S; De Angelis F ChemSusChem; 2013 Jan; 6(1):160-7. PubMed ID: 23139164 [TBL] [Abstract][Full Text] [Related]
14. Co-liquefaction of micro- and macroalgae in subcritical water. Jin B; Duan P; Xu Y; Wang F; Fan Y Bioresour Technol; 2013 Dec; 149():103-10. PubMed ID: 24096026 [TBL] [Abstract][Full Text] [Related]
15. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442 [TBL] [Abstract][Full Text] [Related]
16. Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bordoloi N; Narzari R; Chutia RS; Bhaskar T; Kataki R Bioresour Technol; 2015 Feb; 178():83-89. PubMed ID: 25453438 [TBL] [Abstract][Full Text] [Related]
17. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor. Chang S; Zhao Z; Zheng A; Li X; Wang X; Huang Z; He F; Li H Bioresour Technol; 2013 Jun; 138():321-8. PubMed ID: 23624050 [TBL] [Abstract][Full Text] [Related]
18. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Miao C; Chakraborty M; Chen S Bioresour Technol; 2012 Apr; 110():617-27. PubMed ID: 22330592 [TBL] [Abstract][Full Text] [Related]
19. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Wagner J; Bransgrove R; Beacham TA; Allen MJ; Meixner K; Drosg B; Ting VP; Chuck CJ Bioresour Technol; 2016 May; 207():166-74. PubMed ID: 26881334 [TBL] [Abstract][Full Text] [Related]
20. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor. Morgan TJ; Turn SQ; George A PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]