These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 24140939)

  • 1. Bayesian networks for fMRI: a primer.
    Mumford JA; Ramsey JD
    Neuroimage; 2014 Feb; 86():573-82. PubMed ID: 24140939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structurally-informed Bayesian functional connectivity analysis.
    Hinne M; Ambrogioni L; Janssen RJ; Heskes T; van Gerven MA
    Neuroimage; 2014 Feb; 86():294-305. PubMed ID: 24121202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data.
    Wu GR; Liao W; Stramaglia S; Ding JR; Chen H; Marinazzo D
    Med Image Anal; 2013 Apr; 17(3):365-74. PubMed ID: 23422254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and calibration of functional network modeling methods based on known anatomical connections.
    Dawson DA; Cha K; Lewis LB; Mendola JD; Shmuel A
    Neuroimage; 2013 Feb; 67():331-43. PubMed ID: 23153969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic framework for brain connectivity from functional MR images.
    Rajapakse JC; Wang Y; Zheng X; Zhou J
    IEEE Trans Med Imaging; 2008 Jun; 27(6):825-33. PubMed ID: 18541489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples.
    Gates KM; Molenaar PC
    Neuroimage; 2012 Oct; 63(1):310-9. PubMed ID: 22732562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic graphical models for effective connectivity extraction in the brain using FMRI data.
    Ali Safari M; Mohammadbeigi M
    Stud Health Technol Inform; 2012; 180():133-7. PubMed ID: 22874167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning effective brain connectivity with dynamic Bayesian networks.
    Rajapakse JC; Zhou J
    Neuroimage; 2007 Sep; 37(3):749-60. PubMed ID: 17644415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construct validation of a DCM for resting state fMRI.
    Razi A; Kahan J; Rees G; Friston KJ
    Neuroimage; 2015 Feb; 106():1-14. PubMed ID: 25463471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
    Wang N; Zeng W; Chen L
    J Neurosci Methods; 2013 May; 216(1):49-61. PubMed ID: 23563324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of resting-state FMRI and diffusion-weighted MRI connectivity analyses of the human brain: limitations and improvement.
    Zhu DC; Majumdar S
    J Neuroimaging; 2014; 24(2):176-86. PubMed ID: 23279672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures.
    Braun U; Plichta MM; Esslinger C; Sauer C; Haddad L; Grimm O; Mier D; Mohnke S; Heinz A; Erk S; Walter H; Seiferth N; Kirsch P; Meyer-Lindenberg A
    Neuroimage; 2012 Jan; 59(2):1404-12. PubMed ID: 21888983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering-led complex brain networks approach.
    Liu D; Zhong N
    Biomed Mater Eng; 2014; 24(6):2955-62. PubMed ID: 25227002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially adaptive mixture modeling for analysis of FMRI time series.
    Vincent T; Risser L; Ciuciu P
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1059-74. PubMed ID: 20350840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.
    Mechling AE; Hübner NS; Lee HL; Hennig J; von Elverfeldt D; Harsan LA
    Neuroimage; 2014 Aug; 96():203-15. PubMed ID: 24718287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.
    Brown DA; Lazar NA; Datta GS; Jang W; McDowell JE
    Neuroimage; 2014 Jan; 84():97-112. PubMed ID: 23981437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome.
    Gilson M; Moreno-Bote R; Ponce-Alvarez A; Ritter P; Deco G
    PLoS Comput Biol; 2016 Mar; 12(3):e1004762. PubMed ID: 26982185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.