These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2414102)

  • 21. Capillary electrophoresis of proteins under alkaline conditions.
    Zhu MD; Rodriguez R; Hansen D; Wehr T
    J Chromatogr; 1990 Sep; 516(1):123-31. PubMed ID: 1704896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Separation of proteins by high-performance anion-exchange chromatography.
    Flashner M; Ramsden H; Crane LJ
    Anal Biochem; 1983 Dec; 135(2):340-4. PubMed ID: 6318600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of human tear proteins with ceramic hydroxyapatite high-performance liquid chromatography.
    Itagaki T; Yoshida M; Abe S; Omichi H; Nishihira Y
    J Chromatogr; 1993 Oct; 620(1):149-52. PubMed ID: 8106582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indirect pulsed electrochemical detection of amino acids and proteins following high performance liquid chromatography.
    Olson MP; Keating LR; LaCourse WR
    Anal Chim Acta; 2009 Oct; 652(1-2):198-204. PubMed ID: 19786181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of different molecular forms of mouse IgA and IgM monoclonal antibodies by high-performance liquid chromatography on spherical hydroxyapatite beads.
    Aoyama K; Chiba J
    J Immunol Methods; 1993 Jun; 162(2):201-10. PubMed ID: 8391046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unified theory for gel electrophoresis and gel filtration.
    Rodbard D; Chrambach A
    Proc Natl Acad Sci U S A; 1970 Apr; 65(4):970-7. PubMed ID: 4191703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatographic separation of alpha 1-acid glycoprotein from alpha 1-antitrypsin by high-performance liquid chromatography using a hydroxyapatite column.
    Funae Y; Wada S; Imaoka S; Hirotsune S; Tominaga M; Tanaka S; Kishimoto T; Maekawa M
    J Chromatogr; 1986 Aug; 381(1):149-52. PubMed ID: 3021794
    [No Abstract]   [Full Text] [Related]  

  • 28. Characterization of capillary-channeled polymer fiber stationary phases for high-performance liquid chromatography protein separations: Comparative analysis with a packed-bed column.
    Nelson DM; Marcus RK
    Anal Chem; 2006 Dec; 78(24):8462-71. PubMed ID: 17165840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of available lysine in proteins.
    Kakade ML; Liener IE
    Anal Biochem; 1969 Feb; 27(2):273-80. PubMed ID: 5812953
    [No Abstract]   [Full Text] [Related]  

  • 30. On-Line multitasking analytical proteomics: how to separate, reduce, alkylate and digest whole proteins in an on-Line multidimensional chromatography system coupled to MS.
    Tran BQ; Loftheim H; Reubsaet L; Lundanes E; Greibrokk T
    J Sep Sci; 2008 Sep; 31(16-17):2913-23. PubMed ID: 18704998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurements of the wettability of protein-covered hydroxyapatite surfaces.
    Kawasaki K; Kambara M; Matsumura H; Norde W
    Caries Res; 1999; 33(6):473-8. PubMed ID: 10529534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microsequence analysis of peptides and proteins. I. Preparation of samples by reverse-phase liquid chromatography.
    Yuan PM; Pande H; Clark BR; Shively JE
    Anal Biochem; 1982 Mar; 120(2):289-301. PubMed ID: 6283937
    [No Abstract]   [Full Text] [Related]  

  • 33. [Determination of sulphydryl and disulphide groups in proteins by amperometric titration. III. Investigation of the specifity of Ag+ ions for protein SH groups (author's transl)].
    Hofmann K; Hamm R
    Z Lebensm Unters Forsch; 1975 Nov; 159(4):205-12. PubMed ID: 178121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-performance liquid chromatography as a technique to determine protein adsorption onto hydrophilic/hydrophobic surfaces.
    Huang T; Anselme K; Sarrailh S; Ponche A
    Int J Pharm; 2016 Jan; 497(1-2):54-61. PubMed ID: 26621686
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of size-exclusion separation of proteins on a Superose column.
    Dubin PL; Principi JM
    J Chromatogr; 1989 Sep; 479(1):159-64. PubMed ID: 2553759
    [No Abstract]   [Full Text] [Related]  

  • 36. Protein quantitation using various modes of high performance liquid chromatography.
    Grotefend S; Kaminski L; Wroblewitz S; Deeb SE; Kühn N; Reichl S; Limberger M; Watt S; Wätzig H
    J Pharm Biomed Anal; 2012 Dec; 71():127-38. PubMed ID: 22980318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid microestimation of proteins by membrane chromatography on PVC ultrafilters.
    Pristoupil TI; Kramlová M
    Experientia; 1970 Sep; 26(9):1045-6. PubMed ID: 4097864
    [No Abstract]   [Full Text] [Related]  

  • 38. Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles.
    Chen G; Zhitomirsky I; Ghosh R
    Talanta; 2019 Jul; 199():472-477. PubMed ID: 30952286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct analysis of reversed-phase high-performance thin layer chromatography separated tryptic protein digests using a liquid microjunction surface sampling probe/electrospray ionization mass spectrometry system.
    Emory JF; Walworth MJ; Van Berkel GJ; Schulz M; Minarik S
    Eur J Mass Spectrom (Chichester); 2010; 16(1):21-33. PubMed ID: 20065522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversed-phase liquid chromatography of proteins with strong acids.
    Thévenon G; Regnier FE
    J Chromatogr; 1989 Aug; 476():499-511. PubMed ID: 2777995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.