These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 24141106)

  • 1. A conservative vapour intrusion screening model of oxygen-limited hydrocarbon vapour biodegradation accounting for building footprint size.
    Knight JH; Davis GB
    J Contam Hydrol; 2013 Dec; 155():46-54. PubMed ID: 24141106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen transport from the atmosphere to soil gas beneath a slab-on-grade foundation overlying petroleum-impacted soil.
    Lundegard PD; Johnson PC; Dahlen P
    Environ Sci Technol; 2008 Aug; 42(15):5534-40. PubMed ID: 18754472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment.
    Verginelli I; Yao Y; Wang Y; Ma J; Suuberg EM
    J Hazard Mater; 2016 Jul; 312():84-96. PubMed ID: 27016669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the source to building lateral separation distance in petroleum vapor intrusion.
    Verginelli I; Capobianco O; Baciocchi R
    J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.
    Verginelli I; Baciocchi R
    J Contam Hydrol; 2011 Nov; 126(3-4):167-80. PubMed ID: 22115083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure assessment modeling for volatiles--towards an Australian indoor vapor intrusion model.
    Turczynowicz L; Robinson NI
    J Toxicol Environ Health A; 2007 Oct; 70(19):1619-34. PubMed ID: 17763080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor vapor intrusion with oxygen-limited biodegradation for a subsurface gasoline source.
    DeVaull GE
    Environ Sci Technol; 2007 May; 41(9):3241-8. PubMed ID: 17539532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vapor intrusion screening model for the evaluation of risk-based vertical exclusion distances at petroleum contaminated sites.
    Verginelli I; Baciocchi R
    Environ Sci Technol; 2014 Nov; 48(22):13263-72. PubMed ID: 25329246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model.
    Ma J; Yan G; Li H; Guo S
    J Hazard Mater; 2016 Mar; 304():522-31. PubMed ID: 26619051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment.
    Tillman FD; Weaver JW
    Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario.
    Unnithan A; Bekele DN; Chadalavada S; Naidu R
    Sci Total Environ; 2021 Nov; 796():148885. PubMed ID: 34265614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.
    Davis GB; Laslett D; Patterson BM; Johnston CD
    J Environ Manage; 2013 Mar; 117():42-9. PubMed ID: 23339801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: influence of degradation rate, source concentration, and depth.
    Abreu LD; Johnson PC
    Environ Sci Technol; 2006 Apr; 40(7):2304-15. PubMed ID: 16646467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer.
    Sihota NJ; Singurindy O; Mayer KU
    Environ Sci Technol; 2011 Jan; 45(2):482-8. PubMed ID: 21142178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs.
    Aitken CM; Jones DM; Larter SR
    Nature; 2004 Sep; 431(7006):291-4. PubMed ID: 15372028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple lines of evidence to demonstrate vinyl chloride aerobic biodegradation in the vadose zone, and factors controlling rates.
    Patterson BM; Aravena R; Davis GB; Furness AJ; Bastow TP; Bouchard D
    J Contam Hydrol; 2013 Oct; 153():69-77. PubMed ID: 23999077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffusive sampling of C7-C16 hydrocarbons in workplace air: uptake rates, wall effects and use in oil mist measurements.
    Simpson AT; Wright MD
    Ann Occup Hyg; 2008 Jun; 52(4):249-57. PubMed ID: 18403405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils.
    Dandie CE; Weber J; Aleer S; Adetutu EM; Ball AS; Juhasz AL
    Chemosphere; 2010 Nov; 81(9):1061-8. PubMed ID: 20947131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proof-of-concept study of an aerobic vapor migration barrier beneath a building at a petroleum hydrocarbon-impacted site.
    Luo H; Dahlen PR; Johnson PC; Peargin T
    Environ Sci Technol; 2013 Feb; 47(4):1977-84. PubMed ID: 23346904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.