These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 24141123)

  • 41. Denitrification and its control.
    Ferguson SJ
    Antonie Van Leeuwenhoek; 1994; 66(1-3):89-110. PubMed ID: 7747942
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Curing the Megaplasmid pTT27 from Thermus thermophilus HB27 and Maintaining Exogenous Plasmids in the Plasmid-Free Strain.
    Ohtani N; Tomita M; Itaya M
    Appl Environ Microbiol; 2015 Dec; 82(5):1537-48. PubMed ID: 26712540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Horizontal transference of S-layer genes within Thermus thermophilus.
    Fernández-Herrero LA; Olabarría G; Castón JR; Lasa I; Berenguer J
    J Bacteriol; 1995 Oct; 177(19):5460-6. PubMed ID: 7559330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes.
    Baumann B; Snozzi M; Zehnder AJ; Van Der Meer JR
    J Bacteriol; 1996 Aug; 178(15):4367-74. PubMed ID: 8755862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-scale metabolic network reconstruction and in silico flux analysis of the thermophilic bacterium Thermus thermophilus HB27.
    Lee NR; Lakshmanan M; Aggarwal S; Song JW; Karimi IA; Lee DY; Park JB
    Microb Cell Fact; 2014 Apr; 13():61. PubMed ID: 24774833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A sulfite respiration pathway from Thermus thermophilus and the key role of newly identified cytochrome c₅₅₀.
    Robin S; Arese M; Forte E; Sarti P; Giuffrè A; Soulimane T
    J Bacteriol; 2011 Aug; 193(15):3988-97. PubMed ID: 21665981
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis.
    Santana MM; Gonzalez JM; Cruz C
    Front Microbiol; 2017; 8():1947. PubMed ID: 29067010
    [TBL] [Abstract][Full Text] [Related]  

  • 49.
    Hidalgo-García A; Torres MJ; Salas A; Bedmar EJ; Girard L; Delgado MJ
    Front Microbiol; 2019; 10():980. PubMed ID: 31134023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A third subunit in ancestral cytochrome c-dependent nitric oxide reductases.
    Bricio C; Alvarez L; San Martin M; Schurig-Briccio LA; Gennis RB; Berenguer J
    Appl Environ Microbiol; 2014 Aug; 80(16):4871-8. PubMed ID: 24907324
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD.
    Sorokin DY; Kuenen JG; Jetten MS
    Arch Microbiol; 2001 Feb; 175(2):94-101. PubMed ID: 11285746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein Network of the Pseudomonas aeruginosa Denitrification Apparatus.
    Borrero-de Acuña JM; Rohde M; Wissing J; Jänsch L; Schobert M; Molinari G; Timmis KN; Jahn M; Jahn D
    J Bacteriol; 2016 May; 198(9):1401-13. PubMed ID: 26903416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans.
    Stouthamer AH
    J Bioenerg Biomembr; 1991 Apr; 23(2):163-85. PubMed ID: 2050653
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus.
    Payne WJ; Riley PS; Cox CD
    J Bacteriol; 1971 May; 106(2):356-61. PubMed ID: 4324803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of a low-molecular-weight, multicopy plasmid, pNHK101, from Thermus sp. TK10 and its use as an expression vector for T. thermophilus HB27.
    Kobayashi H; Kuwae A; Maseda H; Nakamura A; Hoshino T
    Plasmid; 2005 Jul; 54(1):70-9. PubMed ID: 15907540
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ICETh1 and ICETh2, two interdependent mobile genetic elements in Thermus thermophilus transjugation.
    Baquedano I; Mencía M; Blesa A; Burrus V; Berenguerfi J
    Environ Microbiol; 2020 Jan; 22(1):158-169. PubMed ID: 31715642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Engineering the genome of Thermus thermophilus using a counterselectable marker.
    Carr JF; Danziger ME; Huang AL; Dahlberg AE; Gregory ST
    J Bacteriol; 2015 Mar; 197(6):1135-44. PubMed ID: 25605305
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses.
    Vaccaro BJ; Thorgersen MP; Lancaster WA; Price MN; Wetmore KM; Poole FL; Deutschbauer A; Arkin AP; Adams MW
    Appl Environ Microbiol; 2016 Jan; 82(1):51-61. PubMed ID: 26452555
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Development of plasmid cloning vectors for Thermus thermophilus HB8: expression of a heterologous, plasmid-borne kanamycin nucleotidyltransferase gene.
    Mather MW; Fee JA
    Appl Environ Microbiol; 1992 Jan; 58(1):421-5. PubMed ID: 1311546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigation into the role of the truncated denitrification chain in Rhizobium sullae strain HCNT1.
    Casella S; Shapleigh JP; Toffanin A; Basaglia M
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):130-2. PubMed ID: 16417501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.