These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 24141184)
1. Lentivirus-mediated ERK2 siRNA reduces joint capsule fibrosis in a rat model of post-traumatic joint contracture. Li F; Liu S; Fan C Int J Mol Sci; 2013 Oct; 14(10):20833-44. PubMed ID: 24141184 [TBL] [Abstract][Full Text] [Related]
2. Effect of pERK2 on extracellular matrix turnover of the fibrotic joint capsule in a post-traumatic joint contracture model. Sun Y; Li F; Fan C Exp Ther Med; 2016 Feb; 11(2):547-552. PubMed ID: 26893645 [TBL] [Abstract][Full Text] [Related]
3. The mast cell stabilizer ketotifen reduces joint capsule fibrosis in a rabbit model of post-traumatic joint contractures. Monument MJ; Hart DA; Befus AD; Salo PT; Zhang M; Hildebrand KA Inflamm Res; 2012 Apr; 61(4):285-92. PubMed ID: 22173279 [TBL] [Abstract][Full Text] [Related]
4. Intra-articular collagenase injection increases range of motion in a rat knee flexion contracture model. Wong K; Trudel G; Laneuville O Drug Des Devel Ther; 2018; 12():15-24. PubMed ID: 29317799 [TBL] [Abstract][Full Text] [Related]
5. Endoplasmic reticulum stress-dependent ROS production mediates synovial myofibroblastic differentiation in the immobilization-induced rat knee joint contracture model. Jiang S; He R; Zhu L; Liang T; Wang Z; Lu Y; Ren J; Yi X; Xiao D; Wang K Exp Cell Res; 2018 Aug; 369(2):325-334. PubMed ID: 29856991 [TBL] [Abstract][Full Text] [Related]
6. Effects of joint immobilization on changes in myofibroblasts and collagen in the rat knee contracture model. Sasabe R; Sakamoto J; Goto K; Honda Y; Kataoka H; Nakano J; Origuchi T; Endo D; Koji T; Okita M J Orthop Res; 2017 Sep; 35(9):1998-2006. PubMed ID: 27918117 [TBL] [Abstract][Full Text] [Related]
7. Role of hypoxia-mediated pyroptosis in the development of extending knee joint contracture in rats. Zhang QB; Huo L; Li M; Zhang R; Zhou T; Wang F; Zhou Y Eur J Med Res; 2024 May; 29(1):298. PubMed ID: 38802976 [TBL] [Abstract][Full Text] [Related]
8. The effect of extracorporeal shock wave on joint capsule fibrosis based on A Yuan H; Wang K; Zhang QB; Wang F; Zhou Y J Orthop Surg Res; 2023 Dec; 18(1):930. PubMed ID: 38057890 [TBL] [Abstract][Full Text] [Related]
9. Rabbit Model of Extending Knee Joint Contracture: Progression of Joint Motion Restriction and Subsequent Joint Capsule Changes after Immobilization. Zhou Y; Zhang QB; Zhong HZ; Liu Y; Li J; Lv H; Jing JH J Knee Surg; 2020 Jan; 33(1):15-21. PubMed ID: 30562834 [TBL] [Abstract][Full Text] [Related]
10. The mast cell stabilizer ketotifen fumarate lessens contracture severity and myofibroblast hyperplasia: a study of a rabbit model of posttraumatic joint contractures. Monument MJ; Hart DA; Befus AD; Salo PT; Zhang M; Hildebrand KA J Bone Joint Surg Am; 2010 Jun; 92(6):1468-77. PubMed ID: 20516323 [TBL] [Abstract][Full Text] [Related]
11. Active exercise on immobilization-induced contractured rat knees develops arthrogenic joint contracture with pathological changes. Kaneguchi A; Ozawa J; Minamimoto K; Yamaoka K J Appl Physiol (1985); 2018 Feb; 124(2):291-301. PubMed ID: 28982941 [TBL] [Abstract][Full Text] [Related]
12. Efficient inhibition of the formation of joint adhesions by ERK2 small interfering RNAs. Li F; Ruan H; Fan C; Zeng B; Wang C; Wang X Biochem Biophys Res Commun; 2010 Jan; 391(1):795-9. PubMed ID: 19958750 [TBL] [Abstract][Full Text] [Related]
13. Development of arthrogenic joint contracture as a result of pathological changes in remobilized rat knees. Kaneguchi A; Ozawa J; Kawamata S; Yamaoka K J Orthop Res; 2017 Jul; 35(7):1414-1423. PubMed ID: 27601089 [TBL] [Abstract][Full Text] [Related]
15. Expression patterns of collagen types I and III in the capsule of a rat knee contracture model. Hagiwara Y; Ando A; Onoda Y; Matsui H; Chimoto E; Suda H; Itoi E J Orthop Res; 2010 Mar; 28(3):315-21. PubMed ID: 19777487 [TBL] [Abstract][Full Text] [Related]
16. Accumulation of advanced-glycation end products (AGEs) accelerates arthrogenic joint contracture in immobilized rat knee. Ozawa J; Kaneguchi A; Minamimoto K; Tanaka R; Kito N; Moriyama H J Orthop Res; 2018 Mar; 36(3):854-863. PubMed ID: 28862361 [TBL] [Abstract][Full Text] [Related]
17. Development and progression of immobilization-induced skin fibrosis through overexpression of transforming growth factor-ß1 and hypoxic conditions in a rat knee joint contracture model. Goto K; Sakamoto J; Nakano J; Kataoka H; Honda Y; Sasabe R; Origuchi T; Okita M Connect Tissue Res; 2017 Nov; 58(6):586-596. PubMed ID: 28121187 [TBL] [Abstract][Full Text] [Related]
18. Target NF-κB p65 for preventing posttraumatic joint contracture in rats. Kong L; Liang Y; Hou J; Zhang W; Jiang S J Orthop Res; 2024 Oct; 42(10):2172-2180. PubMed ID: 38751161 [TBL] [Abstract][Full Text] [Related]
19. A myofibroblast-mast cell-neuropeptide axis of fibrosis in post-traumatic joint contractures: an in vitro analysis of mechanistic components. Hildebrand KA; Zhang M; Befus AD; Salo PT; Hart DA J Orthop Res; 2014 Oct; 32(10):1290-6. PubMed ID: 24985721 [TBL] [Abstract][Full Text] [Related]
20. Effects of Different Static Progressive Stretching Durations on Range of Motion, Myofibroblasts, and Collagen in a Posttraumatic Knee Contracture Rat Model. Wang L; Cui JB; Xie HM; Zuo XQ; He JL; Jia ZS; Zhang LN Phys Ther; 2022 May; 102(5):. PubMed ID: 34972861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]