These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Tunable Band Gap and Conductivity Type of ZnSe/Si Core-Shell Nanowire Heterostructures. Zeng Y; Xing H; Fang Y; Huang Y; Lu A; Chen X Materials (Basel); 2014 Oct; 7(11):7276-7288. PubMed ID: 28788245 [TBL] [Abstract][Full Text] [Related]
5. Epitaxial core-shell and core-multishell nanowire heterostructures. Lauhon LJ; Gudiksen MS; Wang D; Lieber CM Nature; 2002 Nov; 420(6911):57-61. PubMed ID: 12422212 [TBL] [Abstract][Full Text] [Related]
6. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Lysov A; Offer M; Gutsche C; Regolin I; Topaloglu S; Geller M; Prost W; Tegude FJ Nanotechnology; 2011 Feb; 22(8):085702. PubMed ID: 21242617 [TBL] [Abstract][Full Text] [Related]
7. Unambiguous identification of recombination lines in single zinc-blende ZnSe nanowires in direct relation to their microstructure. Saxena A; Pan Q; Ruda HE Nanotechnology; 2013 Mar; 24(10):105701. PubMed ID: 23416878 [TBL] [Abstract][Full Text] [Related]
10. Enhanced visible photoluminescence from ultrathin ZnO films grown on Si-nanowires by atomic layer deposition. Chang YM; Jian SR; Lee HY; Lin CM; Juang JY Nanotechnology; 2010 Sep; 21(38):385705. PubMed ID: 20798465 [TBL] [Abstract][Full Text] [Related]
11. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation. Shi W; Chopra N ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284 [TBL] [Abstract][Full Text] [Related]
12. [Investigation of spectroscopy of ZnCuInS/ZnSe/ZnS quantum dots]. Lin YJ; Liu WY; Zhang Y; Bi K; Zhang TQ; Feng Y; Wang YD Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):20-2. PubMed ID: 24783525 [TBL] [Abstract][Full Text] [Related]
13. Epitaxial heterostructures: side-to-side Si-ZnS, Si-ZnSe biaxial nanowires, and sandwichlike ZnS-Si-ZnS triaxial nanowires. Hu J; Bando Y; Liu Z; Sekiguchi T; Golberg D; Zhan J J Am Chem Soc; 2003 Sep; 125(37):11306-13. PubMed ID: 16220953 [TBL] [Abstract][Full Text] [Related]
14. Enhanced surface-excitonic emission in ZnO/Al(2)O(3) core-shell nanowires. Richters JP; Voss T; Kim DS; Scholz R; Zacharias M Nanotechnology; 2008 Jul; 19(30):305202. PubMed ID: 21828756 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy. Nami M; Eller RF; Okur S; Rishinaramangalam AK; Liu S; Brener I; Feezell DF Nanotechnology; 2017 Jan; 28(2):025202. PubMed ID: 27905321 [TBL] [Abstract][Full Text] [Related]
16. Vapour-liquid-solid growth of ZnO-ZnMgO core-shell nanowires by gold-catalysed molecular beam epitaxy. Kennedy OW; White ER; Shaffer MSP; Warburton PA Nanotechnology; 2019 May; 30(19):194001. PubMed ID: 30793703 [TBL] [Abstract][Full Text] [Related]
17. Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods. Yang Q; Cai H; Hu Z; Duan Z; Yang X; Sun J; Xu N; Wu J Nanoscale Res Lett; 2014 Jan; 9(1):31. PubMed ID: 24428949 [TBL] [Abstract][Full Text] [Related]
18. Growth of InAs/InP core-shell nanowires with various pure crystal structures. Gorji Ghalamestani S; Heurlin M; Wernersson LE; Lehmann S; Dick KA Nanotechnology; 2012 Jul; 23(28):285601. PubMed ID: 22717421 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media. Fang Z; Wu P; Zhong X; Yang YJ Nanotechnology; 2010 Jul; 21(30):305604. PubMed ID: 20610870 [TBL] [Abstract][Full Text] [Related]