These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 24141312)

  • 1. Integration of the olfactory code across dendritic claws of single mushroom body neurons.
    Gruntman E; Turner GC
    Nat Neurosci; 2013 Dec; 16(12):1821-9. PubMed ID: 24141312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic developmental plasticity allows robust sparse wiring of the
    Elkahlah NA; Rogow JA; Ahmed M; Clowney EJ
    Elife; 2020 Jan; 9():. PubMed ID: 31913123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olfactory representations by Drosophila mushroom body neurons.
    Turner GC; Bazhenov M; Laurent G
    J Neurophysiol; 2008 Feb; 99(2):734-46. PubMed ID: 18094099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separate But Interactive Parallel Olfactory Processing Streams Governed by Different Types of GABAergic Feedback Neurons in the Mushroom Body of a Basal Insect.
    Takahashi N; Nishino H; Domae M; Mizunami M
    J Neurosci; 2019 Oct; 39(44):8690-8704. PubMed ID: 31548236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging.
    Li H; Li Y; Lei Z; Wang K; Guo A
    Proc Natl Acad Sci U S A; 2013 Jul; 110(29):12084-9. PubMed ID: 23818618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testing odor response stereotypy in the Drosophila mushroom body.
    Murthy M; Fiete I; Laurent G
    Neuron; 2008 Sep; 59(6):1009-23. PubMed ID: 18817738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random convergence of olfactory inputs in the Drosophila mushroom body.
    Caron SJ; Ruta V; Abbott LF; Axel R
    Nature; 2013 May; 497(7447):113-7. PubMed ID: 23615618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila.
    Li W; Cressy M; Qin H; Fulga T; Van Vactor D; Dubnau J
    J Neurosci; 2013 Mar; 33(13):5821-33. PubMed ID: 23536094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A central neural pathway controlling odor tracking in Drosophila.
    Slater G; Levy P; Chan KL; Larsen C
    J Neurosci; 2015 Feb; 35(5):1831-48. PubMed ID: 25653345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Population of Projection Neurons that Inhibits the Lateral Horn but Excites the Antennal Lobe through Chemical Synapses in
    Shimizu K; Stopfer M
    Front Neural Circuits; 2017; 11():30. PubMed ID: 28515683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila larvae establish appetitive olfactory memories via mushroom body neurons of embryonic origin.
    Pauls D; Selcho M; Gendre N; Stocker RF; Thum AS
    J Neurosci; 2010 Aug; 30(32):10655-66. PubMed ID: 20702697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body.
    Honegger KS; Campbell RA; Turner GC
    J Neurosci; 2011 Aug; 31(33):11772-85. PubMed ID: 21849538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic membrane properties and inhibitory synaptic input of kenyon cells as mechanisms for sparse coding?
    Demmer H; Kloppenburg P
    J Neurophysiol; 2009 Sep; 102(3):1538-50. PubMed ID: 19553491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx.
    Butcher NJ; Friedrich AB; Lu Z; Tanimoto H; Meinertzhagen IA
    J Comp Neurol; 2012 Jul; 520(10):2185-201. PubMed ID: 22237598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.
    Séjourné J; Plaçais PY; Aso Y; Siwanowicz I; Trannoy S; Thoma V; Tedjakumala SR; Rubin GM; Tchénio P; Ito K; Isabel G; Tanimoto H; Preat T
    Nat Neurosci; 2011 Jun; 14(7):903-10. PubMed ID: 21685917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of correlated activity in an olfactory circuit.
    Kazama H; Wilson RI
    Nat Neurosci; 2009 Sep; 12(9):1136-44. PubMed ID: 19684589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe.
    Olsen SR; Bhandawat V; Wilson RI
    Neuron; 2007 Apr; 54(1):89-103. PubMed ID: 17408580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentric zones for pheromone components in the mushroom body calyx of the moth brain.
    Namiki S; Takaguchi M; Seki Y; Kazawa T; Fukushima R; Iwatsuki C; Kanzaki R
    J Comp Neurol; 2013 Apr; 521(5):1073-92. PubMed ID: 22911613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The insect mushroom body, an experience-dependent recoding device.
    Menzel R
    J Physiol Paris; 2014; 108(2-3):84-95. PubMed ID: 25092259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Odor-evoked neural oscillations in Drosophila are mediated by widely branching interneurons.
    Tanaka NK; Ito K; Stopfer M
    J Neurosci; 2009 Jul; 29(26):8595-603. PubMed ID: 19571150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.