BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24141488)

  • 21. tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks.
    Gerstl MP; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2015 Jul; 31(13):2232-4. PubMed ID: 25701571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decomposing flux distributions into elementary flux modes in genome-scale metabolic networks.
    Chan SH; Ji P
    Bioinformatics; 2011 Aug; 27(16):2256-62. PubMed ID: 21685054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Random sampling of elementary flux modes in large-scale metabolic networks.
    Machado D; Soons Z; Patil KR; Ferreira EC; Rocha I
    Bioinformatics; 2012 Sep; 28(18):i515-i521. PubMed ID: 22962475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards scaling elementary flux mode computation.
    Ullah E; Yosafshahi M; Hassoun S
    Brief Bioinform; 2020 Dec; 21(6):1875-1885. PubMed ID: 31745550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models.
    Maarleveld TR; Wortel MT; Olivier BG; Teusink B; Bruggeman FJ
    PLoS Comput Biol; 2015 Apr; 11(4):e1004166. PubMed ID: 25849486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How important is thermodynamics for identifying elementary flux modes?
    Peres S; Jolicœur M; Moulin C; Dague P; Schuster S
    PLoS One; 2017; 12(2):e0171440. PubMed ID: 28222104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolomics integrated elementary flux mode analysis in large metabolic networks.
    Gerstl MP; Ruckerbauer DE; Mattanovich D; Jungreuthmayer C; Zanghellini J
    Sci Rep; 2015 Mar; 5():8930. PubMed ID: 25754258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Markov constraint to uniquely identify elementary flux mode weights in unimolecular metabolic networks.
    Chitpin JG; Perkins TJ
    J Theor Biol; 2023 Nov; 575():111632. PubMed ID: 37804942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics-based metabolic flux analysis.
    Henry CS; Broadbelt LJ; Hatzimanikatis V
    Biophys J; 2007 Mar; 92(5):1792-805. PubMed ID: 17172310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct calculation of elementary flux modes satisfying several biological constraints in genome-scale metabolic networks.
    Pey J; Planes FJ
    Bioinformatics; 2014 Aug; 30(15):2197-203. PubMed ID: 24728852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs.
    Jungreuthmayer C; Ruckerbauer DE; Gerstl MP; Hanscho M; Zanghellini J
    PLoS One; 2015; 10(6):e0129840. PubMed ID: 26091045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On correlated reaction sets and coupled reaction sets in metabolic networks.
    Marashi SA; Hosseini Z
    J Bioinform Comput Biol; 2015 Aug; 13(4):1571003. PubMed ID: 25747383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic states with maximal specific rate carry flux through an elementary flux mode.
    Wortel MT; Peters H; Hulshof J; Teusink B; Bruggeman FJ
    FEBS J; 2014 Mar; 281(6):1547-55. PubMed ID: 24460934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis on relationship between extreme pathways and correlated reaction sets.
    Xi Y; Chen YP; Cao M; Wang W; Wang F
    BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S58. PubMed ID: 19208161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks.
    Nookaew I; Meechai A; Thammarongtham C; Laoteng K; Ruanglek V; Cheevadhanarak S; Nielsen J; Bhumiratana S
    Biotechnol Bioeng; 2007 Aug; 97(6):1535-49. PubMed ID: 17238207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic constraints for identifying elementary flux modes.
    Peres S; Schuster S; Dague P
    Biochem Soc Trans; 2018 Jun; 46(3):641-647. PubMed ID: 29743275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.
    Klamt S; Müller S; Regensburger G; Zanghellini J
    Metab Eng; 2018 May; 47():153-169. PubMed ID: 29427605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The common message of constraint-based optimization approaches: overflow metabolism is caused by two growth-limiting constraints.
    de Groot DH; Lischke J; Muolo R; Planqué R; Bruggeman FJ; Teusink B
    Cell Mol Life Sci; 2020 Feb; 77(3):441-453. PubMed ID: 31758233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.