These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24141527)

  • 1. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors.
    Jain A; Aravindan V; Jayaraman S; Kumar PS; Balasubramanian R; Ramakrishna S; Madhavi S; Srinivasan MP
    Sci Rep; 2013 Oct; 3():3002. PubMed ID: 24141527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs).
    Banerjee A; Upadhyay KK; Puthusseri D; Aravindan V; Madhavi S; Ogale S
    Nanoscale; 2014 Apr; 6(8):4387-94. PubMed ID: 24633050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling TiNb2 O7 as an insertion anode for lithium ion capacitors with high energy and power density.
    Aravindan V; Sundaramurthy J; Jain A; Kumar PS; Ling WC; Ramakrishna S; Srinivasan MP; Madhavi S
    ChemSusChem; 2014 Jul; 7(7):1858-63. PubMed ID: 24961606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass-Derived Electrode for Next Generation Lithium-Ion Capacitors.
    Sennu P; Aravindan V; Ganesan M; Lee YG; Lee YS
    ChemSusChem; 2016 Apr; 9(8):849-54. PubMed ID: 26990699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically Generated γ-Li
    Divya ML; Aravindan V
    Chem Asian J; 2019 Dec; 14(24):4665-4672. PubMed ID: 31403253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Energy Density Li-Ion Hybrid Capacitor Fabricated from Bio-Waste Derived Carbon Nanosheets Cathode and Graphite Anode.
    Nanaji K; Pappu S; Anandan S; Rao TN
    Glob Chall; 2022 Oct; 6(10):2200082. PubMed ID: 36275356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities.
    Wang G; Oswald S; Löffler M; Müllen K; Feng X
    Adv Mater; 2019 Apr; 31(14):e1807712. PubMed ID: 30767311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe
    Sun M; Chen X; Tan S; He Y; Saha P; Cheng Q
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From waste paper basket to solid state and Li-HEC ultracapacitor electrodes: a value added journey for shredded office paper.
    Puthusseri D; Aravindan V; Anothumakkool B; Kurungot S; Madhavi S; Ogale S
    Small; 2014 Nov; 10(21):4395-402. PubMed ID: 25044804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-sized Mo- and Nb-doped TiO
    Bauer D; Roberts AJ; Matsumi N; Darr JA
    Nanotechnology; 2017 May; 28(19):195403. PubMed ID: 28352001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells.
    Manoj M; Muhamed Ashraf C; Jasna M; Anilkumar KM; Jinisha B; Pradeep VS; Jayalekshmi S
    J Colloid Interface Sci; 2019 Feb; 535():287-299. PubMed ID: 30316115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudocapacitance of TiO
    Que LF; Yu FD; Wang ZB; Gu DM
    Small; 2018 Apr; 14(17):e1704508. PubMed ID: 29611299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors.
    Wang Y; Duan Y; Liang X; Tang L; Sun L; Wang R; Wei S; Huang H; Yang P; Hu H
    Molecules; 2023 Oct; 28(20):. PubMed ID: 37894667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interphase stabilized electrospun SnO
    Akshay M; Jayaraman S; Ulaganathan M; Lee YS; Aravindan V
    J Colloid Interface Sci; 2023 Sep; 646():703-710. PubMed ID: 37229988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Li-Ion Capacitor Based on an Activated Carbon Cathode and Well-Dispersed Ultrafine TiO
    Yang C; Lan JL; Liu WX; Liu Y; Yu YH; Yang XP
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18710-18719. PubMed ID: 28497689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode.
    Wang H; Guan C; Wang X; Fan HJ
    Small; 2015 Mar; 11(12):1470-7. PubMed ID: 25366170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors.
    Jiang J; Zhang Y; Li Z; An Y; Zhu Q; Xu Y; Zang S; Dou H; Zhang X
    J Colloid Interface Sci; 2020 May; 567():75-83. PubMed ID: 32036116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.
    Ahn W; Lee DU; Li G; Feng K; Wang X; Yu A; Lui G; Chen Z
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25297-305. PubMed ID: 27603692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.