BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 24141631)

  • 1. An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries.
    Fahy P; Delassus P; McCarthy P; Sultan S; Hynes N; Morris L
    J Biomech Eng; 2014 Jan; 136(1):011007. PubMed ID: 24141631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows.
    Alastruey J; Parker KH; Peiró J; Byrd SM; Sherwin SJ
    J Biomech; 2007; 40(8):1794-805. PubMed ID: 17045276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An experimental investigation of the hemodynamic variations due to aplastic vessels within three-dimensional phantom models of the circle of Willis.
    Fahy P; McCarthy P; Sultan S; Hynes N; Delassus P; Morris L
    Ann Biomed Eng; 2014 Jan; 42(1):123-38. PubMed ID: 24018609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures.
    Liu X; Gao Z; Xiong H; Ghista D; Ren L; Zhang H; Wu W; Huang W; Hau WK
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1439-1456. PubMed ID: 26935302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental study of hemodynamics in the Circle of Willis.
    Zhu G; Yuan Q; Yang J; Yeo J
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S10. PubMed ID: 25603138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model.
    Zhu G; Yuan Q; Yang J; Yeo JH
    Biomed Eng Online; 2015 Nov; 14():107. PubMed ID: 26608827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-flow at the anterior communicating artery and its implication in cerebral aneurysm formation.
    Jou LD; Lee DH; Mawad ME
    J Biomech; 2010 Aug; 43(11):2189-95. PubMed ID: 20447636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the circle of Willis to assess the effect of anatomical variations on the development of unilateral internal carotid artery stenosis.
    Zhang C; Wang L; Li X; Li S; Pu F; Fan Y; Li D
    Biomed Mater Eng; 2014; 24(1):491-9. PubMed ID: 24211932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the collateral capacity of the circle of Willis of patients with severe carotid artery stenosis by 3D computational modeling.
    Long Q; Luppi L; König CS; Rinaldo V; Das SK
    J Biomech; 2008 Aug; 41(12):2735-42. PubMed ID: 18674765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.
    Piskin S; Ündar A; Pekkan K
    Artif Organs; 2015 Oct; 39(10):E164-75. PubMed ID: 25940836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulations of the blood flow in the patient-specific arterial cerebral circle region.
    Reorowicz P; Obidowski D; Klosinski P; Szubert W; Stefanczyk L; Jozwik K
    J Biomech; 2014 May; 47(7):1642-51. PubMed ID: 24674598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The variability of the circle of Willis: univariate and bivariate analysis.
    Hillen B
    Acta Morphol Neerl Scand; 1986; 24(2):87-101. PubMed ID: 3565095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of anterior communicating artery diameter on cerebral hemodynamics in internal carotid artery disease. A model study.
    Cassot F; Vergeur V; Bossuet P; Hillen B; Zagzoule M; Marc-Vergnes JP
    Circulation; 1995 Nov; 92(10):3122-31. PubMed ID: 7586284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Patient-Specific Three-Dimensional Hemodynamic Model of the Circle of Willis.
    Rezaie H; Ashrafizadeh A; Mojra A
    Cardiovasc Eng Technol; 2017 Dec; 8(4):495-504. PubMed ID: 28913763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1D simulation of blood flow characteristics in the circle of Willis using THINkS.
    Huang GP; Yu H; Yang Z; Schwieterman R; Ludwig B
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):389-397. PubMed ID: 29722571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Appraising the plasticity of the circle of Willis: a model of hemodynamic modulation in cerebral arteriovenous malformations.
    Chuang YM; Guo W; Lin CP
    Eur Neurol; 2010; 63(5):295-301. PubMed ID: 20424460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery.
    Liang F; Fukasaku K; Liu H; Takagi S
    Biomed Eng Online; 2011 Sep; 10():84. PubMed ID: 21943370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unilateral fetal-type circle of Willis anatomy causes right-left asymmetry in cerebral blood flow with pseudo-continuous arterial spin labeling: A limitation of arterial spin labeling-based cerebral blood flow measurements?
    Barkeij Wolf JJH; Foster-Dingley JC; Moonen JEF; van Osch MJP; de Craen AJM; de Ruijter W; van der Mast RC; van der Grond J
    J Cereb Blood Flow Metab; 2016 Sep; 36(9):1570-8. PubMed ID: 26755444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3D numerical study of the collateral capacity of the Circle of Willis with anatomical variation in the posterior circulation.
    Ren Y; Chen Q; Li ZY
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S11. PubMed ID: 25603312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D-0D Simulation of the Entire Cardiovascular System with SPECT Data.
    Zhang H; Fujiwara N; Kobayashi M; Yamada S; Liang F; Takagi S; Oshima M
    Ann Biomed Eng; 2016 Aug; 44(8):2351-2363. PubMed ID: 26721836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.