BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 24141856)

  • 1. In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors.
    Thomsen R; Rasmussen HB; Linnet K;
    Drug Metab Dispos; 2014 Jan; 42(1):126-33. PubMed ID: 24141856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of carboxylesterase 1 and impact of natural genetic variants on the hydrolysis of trandolapril.
    Zhu HJ; Appel DI; Johnson JA; Chavin KD; Markowitz JS
    Biochem Pharmacol; 2009 Apr; 77(7):1266-72. PubMed ID: 19185566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro hydrolysis and transesterification of CDP323, an α4β1/α4β7 integrin antagonist ester prodrug.
    Chanteux H; Rosa M; Delatour C; Prakash C; Smith S; Nicolas JM
    Drug Metab Dispos; 2014 Jan; 42(1):153-61. PubMed ID: 24179032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CES1P1 variant -816A>C is not associated with hepatic carboxylesterase 1 expression and activity or antihypertensive effect of trandolapril.
    Zhu HJ; Langaee TY; Gong Y; Wang X; Pepine CJ; Cooper-DeHoff RM; Johnson JA; Markowitz JS
    Eur J Clin Pharmacol; 2016 Jun; 72(6):681-7. PubMed ID: 26915813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors.
    Wang X; Wang G; Shi J; Aa J; Comas R; Liang Y; Zhu HJ
    Pharmacogenomics J; 2016 Jun; 16(3):220-30. PubMed ID: 26076923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conclusive identification of the oxybutynin-hydrolyzing enzyme in human liver.
    Sato Y; Miyashita A; Iwatsubo T; Usui T
    Drug Metab Dispos; 2012 May; 40(5):902-6. PubMed ID: 22293119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis.
    Laizure SC; Parker RB; Herring VL; Hu ZY
    Drug Metab Dispos; 2014 Feb; 42(2):201-6. PubMed ID: 24212379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presence and inter-individual variability of carboxylesterases (CES1 and CES2) in human lung.
    Gabriele M; Puccini P; Lucchi M; Vizziello A; Gervasi PG; Longo V
    Biochem Pharmacol; 2018 Apr; 150():64-71. PubMed ID: 29407485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of human esterases to the metabolism of selected drugs of abuse.
    Meyer MR; Schütz A; Maurer HH
    Toxicol Lett; 2015 Jan; 232(1):159-66. PubMed ID: 25445008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2.
    Wang J; Williams ET; Bourgea J; Wong YN; Patten CJ
    Drug Metab Dispos; 2011 Aug; 39(8):1329-33. PubMed ID: 21540359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different hydrolases involved in bioactivation of prodrug-type angiotensin receptor blockers: carboxymethylenebutenolidase and carboxylesterase 1.
    Ishizuka T; Yoshigae Y; Murayama N; Izumi T
    Drug Metab Dispos; 2013 Nov; 41(11):1888-95. PubMed ID: 23946449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Difference in substrate specificity of carboxylesterase and arylacetamide deacetylase between dogs and humans.
    Yoshida T; Fukami T; Kurokawa T; Gotoh S; Oda A; Nakajima M
    Eur J Pharm Sci; 2018 Jan; 111():167-176. PubMed ID: 28966098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of alcohol on human carboxylesterase drug metabolism.
    Parker RB; Hu ZY; Meibohm B; Laizure SC
    Clin Pharmacokinet; 2015 Jun; 54(6):627-38. PubMed ID: 25511794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions.
    Zhu HJ; Appel DI; Peterson YK; Wang Z; Markowitz JS
    Toxicology; 2010 Apr; 270(2-3):59-65. PubMed ID: 20097249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase.
    Shimizu M; Fukami T; Nakajima M; Yokoi T
    Drug Metab Dispos; 2014 Jul; 42(7):1103-9. PubMed ID: 24751575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases.
    Fukami T; Kariya M; Kurokawa T; Iida A; Nakajima M
    Eur J Pharm Sci; 2015 Oct; 78():47-53. PubMed ID: 26164127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid conversion of the new angiotensin converting enzyme inhibitor ramipril to its active metabolite in rats.
    Tabata S; Yamazaki H; Ohtake Y; Hayashi S
    Arzneimittelforschung; 1990 Aug; 40(8):865-7. PubMed ID: 2173610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylesterase-2 plays a critical role in dabigatran etexilate active metabolite formation.
    Laizure SC; Chen F; Farrar JE; Ali D; Yang B; Parker RB
    Drug Metab Pharmacokinet; 2022 Dec; 47():100479. PubMed ID: 36375226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of endogenous esterase activity on in vitro p-glycoprotein profiling of dabigatran etexilate in Caco-2 monolayers.
    Ishiguro N; Kishimoto W; Volz A; Ludwig-Schwellinger E; Ebner T; Schaefer O
    Drug Metab Dispos; 2014 Feb; 42(2):250-6. PubMed ID: 24212377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive Functional Assessment of Carboxylesterase 1 Nonsynonymous Polymorphisms.
    Wang X; Rida N; Shi J; Wu AH; Bleske BE; Zhu HJ
    Drug Metab Dispos; 2017 Nov; 45(11):1149-1155. PubMed ID: 28838926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.