These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Pathway engineering for the production of β-amyrin and cycloartenol in Escherichia coli-a method to biosynthesize plant-derived triterpene skeletons in E. coli. Takemura M; Tanaka R; Misawa N Appl Microbiol Biotechnol; 2017 Sep; 101(17):6615-6625. PubMed ID: 28710558 [TBL] [Abstract][Full Text] [Related]
8. Engineering a Carotenoid-Overproducing Strain of Azospirillum brasilense for Heterologous Production of Geraniol and Amorphadiene. Mishra S; Pandey P; Dubey AP; Zehra A; Chanotiya CS; Tripathi AK; Mishra MN Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32591387 [No Abstract] [Full Text] [Related]
10. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Anthony JR; Anthony LC; Nowroozi F; Kwon G; Newman JD; Keasling JD Metab Eng; 2009 Jan; 11(1):13-9. PubMed ID: 18775787 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Escherichia coli for production of valerenadiene. Nybo SE; Saunders J; McCormick SP J Biotechnol; 2017 Nov; 262():60-66. PubMed ID: 28988031 [TBL] [Abstract][Full Text] [Related]
12. Dynamic control of endogenous metabolism with combinatorial logic circuits. Moser F; Espah Borujeni A; Ghodasara AN; Cameron E; Park Y; Voigt CA Mol Syst Biol; 2018 Nov; 14(11):e8605. PubMed ID: 30482789 [TBL] [Abstract][Full Text] [Related]
13. Modulating the Precursor and Terpene Synthase Supply for the Whole-Cell Biocatalytic Production of the Sesquiterpene (+)-Zizaene in a Pathway Engineered Aguilar F; Scheper T; Beutel S Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31238595 [TBL] [Abstract][Full Text] [Related]
14. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. Frohwitter J; Heider SA; Peters-Wendisch P; Beekwilder J; Wendisch VF J Biotechnol; 2014 Dec; 191():205-13. PubMed ID: 24910970 [TBL] [Abstract][Full Text] [Related]
15. Toward a semisynthetic stress response system to engineer microbial solvent tolerance. Zingaro KA; Papoutsakis ET mBio; 2012; 3(5):. PubMed ID: 23033472 [TBL] [Abstract][Full Text] [Related]
16. Farnesol production in Escherichia coli through the construction of a farnesol biosynthesis pathway - application of PgpB and YbjG phosphatases. Wang C; Park JE; Choi ES; Kim SW Biotechnol J; 2016 Oct; 11(10):1291-1297. PubMed ID: 27440491 [TBL] [Abstract][Full Text] [Related]
17. Combinatorial engineering of 1-deoxy-D-xylulose 5-phosphate pathway using cross-lapping in vitro assembly (CLIVA) method. Zou R; Zhou K; Stephanopoulos G; Too HP PLoS One; 2013; 8(11):e79557. PubMed ID: 24223968 [TBL] [Abstract][Full Text] [Related]
18. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. Wang C; Yoon SH; Shah AA; Chung YR; Kim JY; Choi ES; Keasling JD; Kim SW Biotechnol Bioeng; 2010 Oct; 107(3):421-9. PubMed ID: 20552672 [TBL] [Abstract][Full Text] [Related]
19. Physiological characterization and quantitative proteomic analyses of metabolically engineered E. coli K4 strains with improved pathways for capsular polysaccharide biosynthesis. Cimini D; Russo R; D'Ambrosio S; Dello Iacono I; Rega C; Carlino E; Argenzio O; Russo L; D'Abrosca B; Chambery A; Schiraldi C Biotechnol Bioeng; 2018 Jul; 115(7):1801-1814. PubMed ID: 29578572 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Rau MH; Calero P; Lennen RM; Long KS; Nielsen AT Microb Cell Fact; 2016 Oct; 15(1):176. PubMed ID: 27737709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]