These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24142578)

  • 21. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2-Cu2O thin films.
    Aytug T; Bogorin DF; Paranthaman PM; Mathis JE; Simpson JT; Christen DK
    Nanotechnology; 2014 Jun; 25(24):245601. PubMed ID: 24857856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospinning of a functional perfluorinated block copolymer as a powerful route for imparting superhydrophobicity and corrosion resistance to aluminum substrates.
    Grignard B; Vaillant A; de Coninck J; Piens M; Jonas AM; Detrembleur C; Jerome C
    Langmuir; 2011 Jan; 27(1):335-42. PubMed ID: 21141949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum vacuum photon modes and superhydrophobicity.
    Dellieu L; Deparis O; Muller J; Sarrazin M
    Phys Rev Lett; 2015 Jan; 114(2):024501. PubMed ID: 25635548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transferrable superhydrophobic TiO2 nanorods on reduced graphene oxide films using block copolymer templates.
    Seo MS; Kim JH; Kim SS; Kang H; Sohn BH
    Nanotechnology; 2015 Apr; 26(16):165302. PubMed ID: 25824622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability.
    Fan P; Pan R; Zhong M
    Langmuir; 2019 Dec; 35(51):16693-16711. PubMed ID: 31782653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanowire conductive polymer gas sensor patterned using self-assembled block copolymer lithography.
    Jung YS; Jung W; Tuller HL; Ross CA
    Nano Lett; 2008 Nov; 8(11):3776-80. PubMed ID: 18954147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function.
    Wang H; He M; Liu H; Guan Y
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust superhydrophobicity: mechanisms and strategies.
    Zhang W; Wang D; Sun Z; Song J; Deng X
    Chem Soc Rev; 2021 Mar; 50(6):4031-4061. PubMed ID: 33554976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic block copolymers for controlling feature sizes in block copolymer lithography.
    Poelma JE; Ono K; Miyajima D; Aida T; Satoh K; Hawker CJ
    ACS Nano; 2012 Dec; 6(12):10845-54. PubMed ID: 23194415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Block Copolymer as a Surface Modifier to Monodisperse Patchy Silica Nanoparticles for Superhydrophobic Surfaces.
    Lou S; Wang J; Yin X; Qu W; Song Y; Xin F; Qaraah FAA
    Langmuir; 2018 Jul; 34(26):7738-7743. PubMed ID: 29806943
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible Teflon nanocone array surfaces with tunable superhydrophobicity for self-cleaning and aqueous droplet patterning.
    Toma M; Loget G; Corn RM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11110-7. PubMed ID: 24654844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Tunable Complementary Micro/Submicro-Nanopatterned Surfaces Combining Block Copolymer Self-Assembly and Colloidal Lithography.
    Chang T; Du B; Huang H; He T
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22705-13. PubMed ID: 27509255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern transfer using block copolymers.
    Gu X; Gunkel I; Russell TP
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120306. PubMed ID: 24000358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perpendicular Block Copolymer Microdomains in High Aspect Ratio Templates.
    Bai W; Gadelrab K; Alexander-Katz A; Ross CA
    Nano Lett; 2015 Oct; 15(10):6901-8. PubMed ID: 26390190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern.
    Lim HS; Han JT; Kwak D; Jin M; Cho K
    J Am Chem Soc; 2006 Nov; 128(45):14458-9. PubMed ID: 17090019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-Restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry.
    Lv T; Cheng Z; Zhang E; Kang H; Liu Y; Jiang L
    Small; 2017 Jan; 13(4):. PubMed ID: 26822176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Directing Block Copolymer Self-Assembly on Patterned Substrates.
    Gunkel I
    Small; 2018 Nov; 14(46):e1802872. PubMed ID: 30318828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon.
    Zhu L; Xiu Y; Xu J; Tamirisa PA; Hess DW; Wong CP
    Langmuir; 2005 Nov; 21(24):11208-12. PubMed ID: 16285792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.