These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 24142798)

  • 1. Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals.
    Shakya AK; Holmdahl R; Nandakumar KS; Kumar A
    J Biomed Mater Res A; 2014 Oct; 102(10):3409-18. PubMed ID: 24142798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells.
    Singh D; Zo SM; Kumar A; Han SS
    J Biomater Sci Polym Ed; 2013; 24(11):1343-59. PubMed ID: 23796035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidized dextran as crosslinker for chitosan cryogel scaffolds and formation of polyelectrolyte complexes between chitosan and gelatin.
    Berillo D; Elowsson L; Kirsebom H
    Macromol Biosci; 2012 Aug; 12(8):1090-9. PubMed ID: 22674878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of gelatin/hyaluronic acid cryogels for adipose tissue engineering: in vitro and in vivo studies.
    Chang KH; Liao HT; Chen JP
    Acta Biomater; 2013 Nov; 9(11):9012-26. PubMed ID: 23851171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility.
    Kemençe N; Bölgen N
    J Tissue Eng Regen Med; 2017 Jan; 11(1):20-33. PubMed ID: 23997022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications.
    Sharma A; Bhat S; Nayak V; Kumar A
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of a temperature-responsive biocompatible poly(N-vinylcaprolactam) cryogel: a step towards designing a novel cell scaffold.
    Srivastava A; Kumar A
    J Biomater Sci Polym Ed; 2009; 20(10):1393-415. PubMed ID: 19622279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable hybrid cryogels functionalized with microparticles as supermacroporous multifunctional biomaterial scaffolds.
    Sami H; Kumar A
    J Biomater Sci Polym Ed; 2013; 24(10):1165-84. PubMed ID: 23713421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.
    Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ
    J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-responsive degradable PEG cryogels as potential cell scaffolds in tissue engineering.
    Dispinar T; Van Camp W; De Cock LJ; De Geest BG; Du Prez FE
    Macromol Biosci; 2012 Mar; 12(3):383-94. PubMed ID: 22223302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-catalyzed crosslinking in a partly frozen state: a new way to produce supermacroporous protein structures.
    Kirsebom H; Elowsson L; Berillo D; Cozzi S; Inci I; Piskin E; Galaev IY; Mattiasson B
    Macromol Biosci; 2013 Jan; 13(1):67-76. PubMed ID: 23239633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-co-Hyaluronic acid porous cryogels and their application in tissue engineering.
    Kutlusoy T; Oktay B; Apohan NK; Süleymanoğlu M; Kuruca SE
    Int J Biol Macromol; 2017 Oct; 103():366-378. PubMed ID: 28526348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatible polysaccharide-based cryogels.
    Reichelt S; Becher J; Weisser J; Prager A; Decker U; Möller S; Berg A; Schnabelrauch M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():164-70. PubMed ID: 24411364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth.
    Tripathi A; Vishnoi T; Singh D; Kumar A
    Macromol Biosci; 2013 Jul; 13(7):838-50. PubMed ID: 23650251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional supermacroporous carrageenan-gelatin cryogel matrix for tissue engineering applications.
    Sharma A; Bhat S; Vishnoi T; Nayak V; Kumar A
    Biomed Res Int; 2013; 2013():478279. PubMed ID: 23936806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation.
    Vishnoi T; Kumar A
    J Mater Sci Mater Med; 2013 Feb; 24(2):447-59. PubMed ID: 23124526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryogels-versatile tools in bioseparation.
    Ertürk G; Mattiasson B
    J Chromatogr A; 2014 Aug; 1357():24-35. PubMed ID: 24915836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds.
    Shirbin SJ; Karimi F; Chan NJ; Heath DE; Qiao GG
    Biomacromolecules; 2016 Sep; 17(9):2981-91. PubMed ID: 27472153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY; Chuang WT; Hsu SH
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9702-9713. PubMed ID: 33600161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.