These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 241429)
1. [Study of the polyoldehydrogenases of the yeast Candida tropicalis during growth on various substrates]. Shakhova IK Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (8):89-91. PubMed ID: 241429 [No Abstract] [Full Text] [Related]
2. [Comparative study of the polyol dehydrogenases of Candida tropicalis X9, growing on D-xylose, and of its mutant capable of growing on L-arabinose]. Shakhova IK Mikrobiologiia; 1973; 42(1):99-106. PubMed ID: 4151661 [No Abstract] [Full Text] [Related]
3. A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions: increase of NADPH availability. Nie Y; Xu Y; Hu QS; Xiao R J Microbiol Biotechnol; 2009 Jan; 19(1):65-71. PubMed ID: 19190410 [TBL] [Abstract][Full Text] [Related]
4. [Reduction of pentoses by cell-free extracts of Candida tropicalis]. Karasevich IuN; Ipatova AP Mikrobiologiia; 1968; 37(2):201-6. PubMed ID: 5732060 [No Abstract] [Full Text] [Related]
5. [Adaptation of the yeast Candida tropicalis to L-arabitol]. Karasevich IuN Mikrobiologiia; 1969; 38(3):465-7. PubMed ID: 4391936 [No Abstract] [Full Text] [Related]
6. -D-glucose:NAD(P) oxidoreductase (1.1.1.47) activity in aqueous extracts from the stomach muscles of domestic birds. Brzĕk K; Karpiak S Arch Immunol Ther Exp (Warsz); 1971; 19(3):403-10. PubMed ID: 4398519 [No Abstract] [Full Text] [Related]
7. Mammalian galactose dehydrogenase. II. Properties, substrate specificity, and developmental changes. Cuatrecasas P; Segal S J Biol Chem; 1966 Dec; 241(24):5910-8. PubMed ID: 4380933 [No Abstract] [Full Text] [Related]
8. [Activity of certain dehydrogenases in accumulation and continuous-flow culture of paraffin-oxidizing yeast of the genus Candida]. Khokhlenko AF; Konovalov SA Prikl Biokhim Mikrobiol; 1975; 11(5):637-9. PubMed ID: 241990 [TBL] [Abstract][Full Text] [Related]
9. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986 [TBL] [Abstract][Full Text] [Related]
10. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025 [TBL] [Abstract][Full Text] [Related]
11. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii. Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950 [TBL] [Abstract][Full Text] [Related]
12. [Activity and substrate specificity of the alcohol dehydrogenases of n-alkane oxidizing yeasts]. Sapozhnikova GP; Krauzova VI Mikrobiologiia; 1979; 48(5):793-7. PubMed ID: 574184 [TBL] [Abstract][Full Text] [Related]
13. General scheme for the metabolisation of hydrocarbons by Candida tropicalis. Lebeault JM; Roche B; Duvnjak Z; Azoulay E Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:F33-4. PubMed ID: 4319451 [No Abstract] [Full Text] [Related]
14. Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum. Suzuki T; Onishi H Appl Microbiol; 1973 May; 25(5):850-2. PubMed ID: 4146025 [TBL] [Abstract][Full Text] [Related]
15. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Fonseca C; Spencer-Martins I; Hahn-Hägerdal B Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211 [TBL] [Abstract][Full Text] [Related]
16. [The activity of xylose reductase and xylitol dehydrogenase in yeasts]. Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534 [TBL] [Abstract][Full Text] [Related]
17. Induction and regulation of D-xylose catabolizing enzymes in Fusarium oxysporum. Singh A; Schügerl K Biochem Int; 1992 Nov; 28(3):481-8. PubMed ID: 1482390 [TBL] [Abstract][Full Text] [Related]
18. Pentose utilizing variants of Novikoff hepatoma cells: modification of growth and morphological properties. Hoffee P; Jargiello P; Zaner L; Martin J J Cell Physiol; 1977 Apr; 91(1):39-50. PubMed ID: 853067 [TBL] [Abstract][Full Text] [Related]
19. Carbohydrate metabolism in Hydrogenomonas eutropha. Cook DW; Tischer RG; Brown LR Can J Microbiol; 1967 Jun; 13(6):701-9. PubMed ID: 4962291 [No Abstract] [Full Text] [Related]
20. Controlled transient changes reveal differences in metabolite production in two Candida yeasts. Granström T; Leisola M Appl Microbiol Biotechnol; 2002 Mar; 58(4):511-6. PubMed ID: 11954799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]