BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 241429)

  • 1. [Study of the polyoldehydrogenases of the yeast Candida tropicalis during growth on various substrates].
    Shakhova IK
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1975; (8):89-91. PubMed ID: 241429
    [No Abstract]   [Full Text] [Related]  

  • 2. [Comparative study of the polyol dehydrogenases of Candida tropicalis X9, growing on D-xylose, and of its mutant capable of growing on L-arabinose].
    Shakhova IK
    Mikrobiologiia; 1973; 42(1):99-106. PubMed ID: 4151661
    [No Abstract]   [Full Text] [Related]  

  • 3. A new strategy to improve the efficiency and sustainability of Candida parapsilosis catalyzing deracemization of (R,S)-1-phenyl-1,2-ethanediol under non-growing conditions: increase of NADPH availability.
    Nie Y; Xu Y; Hu QS; Xiao R
    J Microbiol Biotechnol; 2009 Jan; 19(1):65-71. PubMed ID: 19190410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reduction of pentoses by cell-free extracts of Candida tropicalis].
    Karasevich IuN; Ipatova AP
    Mikrobiologiia; 1968; 37(2):201-6. PubMed ID: 5732060
    [No Abstract]   [Full Text] [Related]  

  • 5. [Adaptation of the yeast Candida tropicalis to L-arabitol].
    Karasevich IuN
    Mikrobiologiia; 1969; 38(3):465-7. PubMed ID: 4391936
    [No Abstract]   [Full Text] [Related]  

  • 6. -D-glucose:NAD(P) oxidoreductase (1.1.1.47) activity in aqueous extracts from the stomach muscles of domestic birds.
    Brzĕk K; Karpiak S
    Arch Immunol Ther Exp (Warsz); 1971; 19(3):403-10. PubMed ID: 4398519
    [No Abstract]   [Full Text] [Related]  

  • 7. Mammalian galactose dehydrogenase. II. Properties, substrate specificity, and developmental changes.
    Cuatrecasas P; Segal S
    J Biol Chem; 1966 Dec; 241(24):5910-8. PubMed ID: 4380933
    [No Abstract]   [Full Text] [Related]  

  • 8. [Activity of certain dehydrogenases in accumulation and continuous-flow culture of paraffin-oxidizing yeast of the genus Candida].
    Khokhlenko AF; Konovalov SA
    Prikl Biokhim Mikrobiol; 1975; 11(5):637-9. PubMed ID: 241990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Activity and substrate specificity of the alcohol dehydrogenases of n-alkane oxidizing yeasts].
    Sapozhnikova GP; Krauzova VI
    Mikrobiologiia; 1979; 48(5):793-7. PubMed ID: 574184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General scheme for the metabolisation of hydrocarbons by Candida tropicalis.
    Lebeault JM; Roche B; Duvnjak Z; Azoulay E
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:F33-4. PubMed ID: 4319451
    [No Abstract]   [Full Text] [Related]  

  • 14. Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum.
    Suzuki T; Onishi H
    Appl Microbiol; 1973 May; 25(5):850-2. PubMed ID: 4146025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction and regulation of D-xylose catabolizing enzymes in Fusarium oxysporum.
    Singh A; Schügerl K
    Biochem Int; 1992 Nov; 28(3):481-8. PubMed ID: 1482390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pentose utilizing variants of Novikoff hepatoma cells: modification of growth and morphological properties.
    Hoffee P; Jargiello P; Zaner L; Martin J
    J Cell Physiol; 1977 Apr; 91(1):39-50. PubMed ID: 853067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbohydrate metabolism in Hydrogenomonas eutropha.
    Cook DW; Tischer RG; Brown LR
    Can J Microbiol; 1967 Jun; 13(6):701-9. PubMed ID: 4962291
    [No Abstract]   [Full Text] [Related]  

  • 20. Controlled transient changes reveal differences in metabolite production in two Candida yeasts.
    Granström T; Leisola M
    Appl Microbiol Biotechnol; 2002 Mar; 58(4):511-6. PubMed ID: 11954799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.