These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 241429)

  • 21. The utilization of rare and unnatural pentoses by yeast Torulopsis candida.
    Karassevitch NY
    Biochimie; 1976; 58(1-2):239-42. PubMed ID: 821541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth of Aerobacter aerogenes on D-arabinose: origin of the enzyme activities.
    Oliver EJ; Mortlock RP
    J Bacteriol; 1971 Oct; 108(1):287-92. PubMed ID: 5122807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic behavior of Candida guilliermondii yeast during xylitol production from Brewer's spent grain hemicellulosic hydrolysate.
    Mussatto SI; Dragone G; Roberto IC
    Biotechnol Prog; 2005; 21(4):1352-6. PubMed ID: 16080723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple forms of xylose reductase in Candida intermedia: comparison of their functional properties using quantitative structure-activity relationships, steady-state kinetic analysis, and pH studies.
    Nidetzky B; Brüggler K; Kratzer R; Mayr P
    J Agric Food Chem; 2003 Dec; 51(27):7930-5. PubMed ID: 14690376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tyr-51 is the proton donor-acceptor for NAD(H)-dependent interconversion of xylose and xylitol by Candida tenuis xylose reductase (AKR2B5).
    Pival SL; Klimacek M; Kratzer R; Nidetzky B
    FEBS Lett; 2008 Dec; 582(29):4095-9. PubMed ID: 19026644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Deadaptation of Candida tropicalis adapted to L-arabinose].
    Karasevich IuN; Baturina MV
    Mikrobiologiia; 1965; 34(4):676-9. PubMed ID: 5871140
    [No Abstract]   [Full Text] [Related]  

  • 27. Effect of D-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl.
    Ikeuchi T; Kiritani R; Azuma M; Ooshima H
    J Basic Microbiol; 2000; 40(3):167-75. PubMed ID: 10957958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Adaptation of Candida tropicalis (Lobvinskaia 2) yeasts to D-arabinose].
    Karasevich IuN
    Mikrobiologiia; 1970; 39(6):1040-5. PubMed ID: 5513403
    [No Abstract]   [Full Text] [Related]  

  • 29. [On some L-arabinose metabolites of Candida tropicalis X-9].
    Karasevich IuN; Ipatova AP
    Mikrobiologiia; 1967; 36(3):386-9. PubMed ID: 5611646
    [No Abstract]   [Full Text] [Related]  

  • 30. Response surface methodology as an approach to determine the optimal activities of xylose reductase and xylitol dehydrogenase enzymes from Candida Mogii.
    Mayerhoff ZD; Roberto IC; Franco TT
    Appl Microbiol Biotechnol; 2006 May; 70(6):761-7. PubMed ID: 16505992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Reactivation of alcohol dehydrogenase of Candida lipolytica cultivated on glucose or n-hexadecane].
    Nyns EJ
    Arch Int Physiol Biochim; 1969 Dec; 77(5):971-2. PubMed ID: 4190902
    [No Abstract]   [Full Text] [Related]  

  • 32. Studies on the enzymatic composition of osmophilic yeasts.
    Verachtert H; Dooms L
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:I19-20. PubMed ID: 4394295
    [No Abstract]   [Full Text] [Related]  

  • 33. Pentose metabolism in Candida. 3. The triphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis.
    Scher BM; Horecker BL
    Arch Biochem Biophys; 1966 Sep; 116(1):117-28. PubMed ID: 4381350
    [No Abstract]   [Full Text] [Related]  

  • 34. Binding energy and specificity in the catalytic mechanism of yeast aldose reductases.
    Nidetzky B; Mayr P; Hadwiger P; Stütz AE
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):101-7. PubMed ID: 10548539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or D-glucose mixtures.
    Xiong H; Turunen O; Pastinen O; Leisola M; von Weymarn N
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):353-8. PubMed ID: 14740196
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F; Kawai S; Mori S; Kono E; Murata K
    FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Ethanol metabolism in the yeasts Yarrowia and Torulopsis (a review)].
    Il'chenko AP; Cherniavskaia OG; Finogenova TV
    Prikl Biokhim Mikrobiol; 2005; 41(5):487-94. PubMed ID: 16240645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Alcohol and aldehyde dehydrogenases of Candida tropicalis cultivated on hydrocarbons].
    Lebeault JM; Roche B; Duvnjak Z; Azoulay E
    Biochim Biophys Acta; 1970 Dec; 220(3):373-85. PubMed ID: 5499619
    [No Abstract]   [Full Text] [Related]  

  • 40. Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic alpha-hydroxy esters and improvement of its efficiency by protein engineering.
    Kratzer R; Nidetzky B
    Chem Commun (Camb); 2007 Mar; (10):1047-9. PubMed ID: 17325801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.