BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24142967)

  • 1. A serial 4DCT study to quantify range variations in charged particle radiotherapy of thoracic cancers.
    Mori S; Dong L; Starkschall G; Mohan R; Chen GT
    J Radiat Res; 2014 Mar; 55(2):309-19. PubMed ID: 24142967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of interfractional anatomical changes on water-equivalent pathlength in charged-particle radiotherapy of lung cancer.
    Mori S; Lu HM; Wolfgang JA; Choi NC; Chen GT
    J Radiat Res; 2009 Nov; 50(6):513-9. PubMed ID: 19959880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the dose variation for prostate heavy charged particle therapy using four-dimensional computed tomography.
    Kumagai M; Okada T; Mori S; Kandatsu S; Tsuji H
    J Radiat Res; 2013 Mar; 54(2):357-66. PubMed ID: 23263729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and visualization of charged particle range variations.
    Mori S; Chen GT
    Int J Radiat Oncol Biol Phys; 2008 Sep; 72(1):268-77. PubMed ID: 18722277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of intrafractional motion on water equivalent pathlength in respiratory-gated heavy charged particle beam radiotherapy.
    Mori S; Chen GT; Endo M
    Int J Radiat Oncol Biol Phys; 2007 Sep; 69(1):308-17. PubMed ID: 17707286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in chest wall thickness during four-dimensional CT in particle lung treatment planning.
    Mori S; Yamamoto N; Nakajima M; Baba M
    Br J Radiol; 2011 Aug; 84(1004):e158-60. PubMed ID: 21750132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
    Li G; Cohen P; Xie H; Low D; Li D; Rimner A
    Phys Med Biol; 2012 Nov; 57(22):7579-98. PubMed ID: 23103415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of interfractional variation of the centroid position and volume of internal target volume during stereotactic body radiotherapy of lung cancer using cone-beam computed tomography.
    Sun Y; Ge H; Cheng S; Yang C; Zhu Q; Li D; Tian Y
    J Appl Clin Med Phys; 2016 Mar; 17(2):461-472. PubMed ID: 27074466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton radiography and fluoroscopy of lung tumors: a Monte Carlo study using patient-specific 4DCT phantoms.
    Han B; Xu XG; Chen GT
    Med Phys; 2011 Apr; 38(4):1903-11. PubMed ID: 21626923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?
    Tseng YD; Wootton L; Nyflot M; Apisarnthanarax S; Rengan R; Bloch C; Sandison G; St James S
    Phys Med Biol; 2018 Jan; 63(2):02NT03. PubMed ID: 29346116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of range fluctuations in charged particle lung irradiation.
    Mori S; Wolfgang J; Lu HM; Schneider R; Choi NC; Chen GT
    Int J Radiat Oncol Biol Phys; 2008 Jan; 70(1):253-61. PubMed ID: 17967513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical approaches to four-dimensional heavy-charged-particle lung therapy.
    Mori S; Wu Z; Folkert MR; Kumagai M; Dobashi S; Sugane T; Baba M
    Radiol Phys Technol; 2010 Jan; 3(1):23-33. PubMed ID: 20821098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments.
    Ehrbar S; Lang S; Stieb S; Riesterer O; Stark LS; Guckenberger M; Klöck S
    Z Med Phys; 2016 Mar; 26(1):45-53. PubMed ID: 26187810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-equivalent pathlength reproducibility due to respiratory pattern variation in charged-particle pancreatic radiotherapy.
    Kumagai M; Mori S; Hara R; Asakura H; Kishimoto R; Kato H; Yamada S; Kandatsu S
    Radiol Phys Technol; 2009 Jan; 2(1):112-8. PubMed ID: 20821137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Craniocaudal safety margin calculation based on interfractional changes in tumor motion in lung SBRT assessed with an EPID in cine mode.
    Ueda Y; Miyazaki M; Nishiyama K; Suzuki O; Tsujii K; Miyagi K
    Int J Radiat Oncol Biol Phys; 2012 Jul; 83(3):1064-9. PubMed ID: 22245190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential systematic uncertainties in IGRT when FBCT reference images are used for pancreatic tumors.
    Amoush A; Abdel-Wahab M; Abazeed M; Xia P
    J Appl Clin Med Phys; 2015 May; 16(3):5257. PubMed ID: 26103487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Planning 4-dimensional computed tomography (4DCT) cannot adequately represent daily intrafractional motion of abdominal tumors.
    Ge J; Santanam L; Noel C; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2013 Mar; 85(4):999-1005. PubMed ID: 23102840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effectiveness of 4DCT in children and adults: A pooled analysis.
    Huijskens SC; van Dijk IWEM; Visser J; Balgobind BV; Rasch CRN; Alderliesten T; Bel A
    J Appl Clin Med Phys; 2019 Jan; 20(1):276-283. PubMed ID: 30414252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of potential internal target volume of liver tumors using cine-MRI.
    Akino Y; Oh RJ; Masai N; Shiomi H; Inoue T
    Med Phys; 2014 Nov; 41(11):111704. PubMed ID: 25370618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for selection of beam angles robust to intra-fractional motion in proton therapy of lung cancer.
    Casares-Magaz O; Toftegaard J; Muren LP; Kallehauge JF; Bassler N; Poulsen PR; Petersen JB
    Acta Oncol; 2014 Aug; 53(8):1058-63. PubMed ID: 24975371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.