These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24143057)

  • 1. AutoAssemblyD: a graphical user interface system for several genome assemblers.
    Veras AA; de Sá PH; Azevedo V; Silva A; Ramos RT
    Bioinformation; 2013; 9(16):840-1. PubMed ID: 24143057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking and Assessment of Eight
    Gupta AK; Kumar M
    OMICS; 2022 Jul; 26(7):372-381. PubMed ID: 35759429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.
    Mariano DC; Pereira FL; Aguiar EL; Oliveira LC; Benevides L; Guimarães LC; Folador EL; Sousa TJ; Ghosh P; Barh D; Figueiredo HC; Silva A; Ramos RT; Azevedo VA
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):456. PubMed ID: 28105921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating de Bruijn graph assemblers on 454 transcriptomic data.
    Ren X; Liu T; Dong J; Sun L; Yang J; Zhu Y; Jin Q
    PLoS One; 2012; 7(12):e51188. PubMed ID: 23236450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly algorithms for next-generation sequencing data.
    Miller JR; Koren S; Sutton G
    Genomics; 2010 Jun; 95(6):315-27. PubMed ID: 20211242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of de novo transcriptome assembly.
    Clarke K; Yang Y; Marsh R; Xie L; Zhang KK
    Sci China Life Sci; 2013 Feb; 56(2):156-62. PubMed ID: 23393031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clover: a clustering-oriented de novo assembler for Illumina sequences.
    Hsieh MF; Lu CL; Tang CY
    BMC Bioinformatics; 2020 Nov; 21(1):528. PubMed ID: 33203354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of de novo assemblers for draft genomes: a case study with fungal genomes.
    Abbas MM; Malluhi QM; Balakrishnan P
    BMC Genomics; 2014; 15 Suppl 9(Suppl 9):S10. PubMed ID: 25521762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pilot study for channel catfish whole genome sequencing and de novo assembly.
    Jiang Y; Lu J; Peatman E; Kucuktas H; Liu S; Wang S; Sun F; Liu Z
    BMC Genomics; 2011 Dec; 12():629. PubMed ID: 22192763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LMAS: evaluating metagenomic short de novo assembly methods through defined communities.
    Mendes CI; Vila-Cerqueira P; Motro Y; Moran-Gilad J; Carriço JA; Ramirez M
    Gigascience; 2022 Dec; 12():. PubMed ID: 36576131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A de novo next generation genomic sequence assembler based on string graph and MapReduce cloud computing framework.
    Chang YJ; Chen CC; Chen CL; Ho JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S28. PubMed ID: 23282094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comprehensive Study of De Novo Genome Assemblers: Current Challenges and Future Prospective.
    Khan AR; Pervez MT; Babar ME; Naveed N; Shoaib M
    Evol Bioinform Online; 2018; 14():1176934318758650. PubMed ID: 29511353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.
    Jünemann S; Prior K; Albersmeier A; Albaum S; Kalinowski J; Goesmann A; Stoye J; Harmsen D
    PLoS One; 2014; 9(9):e107014. PubMed ID: 25198770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GapBlaster-A Graphical Gap Filler for Prokaryote Genomes.
    de Sá PH; Miranda F; Veras A; de Melo DM; Soares S; Pinheiro K; Guimarães L; Azevedo V; Silva A; Ramos RT
    PLoS One; 2016; 11(5):e0155327. PubMed ID: 27171416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallelized short read assembly of large genomes using de Bruijn graphs.
    Liu Y; Schmidt B; Maskell DL
    BMC Bioinformatics; 2011 Aug; 12():354. PubMed ID: 21867511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores.
    Meng J; Wang B; Wei Y; Feng S; Balaji P
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S2. PubMed ID: 25253533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LoReTTA, a user-friendly tool for assembling viral genomes from PacBio sequence data.
    Al Qaffas A; Nichols J; Davison AJ; Ourahmane A; Hertel L; McVoy MA; Camiolo S
    Virus Evol; 2021 Jan; 7(1):veab042. PubMed ID: 33996146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LightAssembler: fast and memory-efficient assembly algorithm for high-throughput sequencing reads.
    El-Metwally S; Zakaria M; Hamza T
    Bioinformatics; 2016 Nov; 32(21):3215-3223. PubMed ID: 27412092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.