These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24143057)

  • 21. The MaSuRCA genome assembler.
    Zimin AV; Marçais G; Puiu D; Roberts M; Salzberg SL; Yorke JA
    Bioinformatics; 2013 Nov; 29(21):2669-77. PubMed ID: 23990416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simplifier: a web tool to eliminate redundant NGS contigs.
    Ramos RT; Carneiro AR; Azevedo V; Schneider MP; Barh D; Silva A
    Bioinformation; 2012; 8(20):996-9. PubMed ID: 23275695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. iPAC: a genome-guided assembler of isoforms via phasing and combing paths.
    Yu T; Liu J; Gao X; Li G
    Bioinformatics; 2020 May; 36(9):2712-2717. PubMed ID: 31985799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the Impact of Assemblers on Virus Detection in a De Novo Metagenomic Analysis Pipeline.
    White DJ; Wang J; Hall RJ
    J Comput Biol; 2017 Sep; 24(9):874-881. PubMed ID: 28414526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.
    Desai A; Marwah VS; Yadav A; Jha V; Dhaygude K; Bangar U; Kulkarni V; Jere A
    PLoS One; 2013; 8(4):e60204. PubMed ID: 23593174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products.
    Nurk S; Bankevich A; Antipov D; Gurevich AA; Korobeynikov A; Lapidus A; Prjibelski AD; Pyshkin A; Sirotkin A; Sirotkin Y; Stepanauskas R; Clingenpeel SR; Woyke T; McLean JS; Lasken R; Tesler G; Alekseyev MA; Pevzner PA
    J Comput Biol; 2013 Oct; 20(10):714-37. PubMed ID: 24093227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Meta-IDBA: a de Novo assembler for metagenomic data.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2011 Jul; 27(13):i94-101. PubMed ID: 21685107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies.
    Boisvert S; Laviolette F; Corbeil J
    J Comput Biol; 2010 Nov; 17(11):1519-33. PubMed ID: 20958248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GAM-NGS: genomic assemblies merger for next generation sequencing.
    Vicedomini R; Vezzi F; Scalabrin S; Arvestad L; Policriti A
    BMC Bioinformatics; 2013; 14 Suppl 7(Suppl 7):S6. PubMed ID: 23815503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward Complete Bacterial Genome Sequencing Through the Combined Use of Multiple Next-Generation Sequencing Platforms.
    Jeong H; Lee DH; Ryu CM; Park SH
    J Microbiol Biotechnol; 2016 Jan; 26(1):207-12. PubMed ID: 26464377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. VAGUE: a graphical user interface for the Velvet assembler.
    Powell DR; Seemann T
    Bioinformatics; 2013 Jan; 29(2):264-5. PubMed ID: 23162059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Benchmarking Long-Read Assemblers for Genomic Analyses of Bacterial Pathogens Using Oxford Nanopore Sequencing.
    Chen Z; Erickson DL; Meng J
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast and accurate short read alignment with Burrows-Wheeler transform.
    Li H; Durbin R
    Bioinformatics; 2009 Jul; 25(14):1754-60. PubMed ID: 19451168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A repetitive sequence assembler based on next-generation sequencing.
    Lian S; Tu Y; Wang Y; Chen X; Wang L
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benchmarking of next and third generation sequencing technologies and their associated algorithms for
    Gavrielatos M; Kyriakidis K; Spandidos DA; Michalopoulos I
    Mol Med Rep; 2021 Apr; 23(4):. PubMed ID: 33537807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Evaluation of Genome Assemblers from Long-Read Sequencing for Plants and Crops.
    Jung H; Jeon MS; Hodgett M; Waterhouse P; Eyun SI
    J Agric Food Chem; 2020 Jul; 68(29):7670-7677. PubMed ID: 32530283
    [TBL] [Abstract][Full Text] [Related]  

  • 40. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.