These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24143261)

  • 21. Comparative structural analysis of nuclear RNase P RNAs from yeast.
    Tranguch AJ; Engelke DR
    J Biol Chem; 1993 Jul; 268(19):14045-55. PubMed ID: 8314772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast mitochondrial RNase P RNA synthesis is altered in an RNase P protein subunit mutant: insights into the biogenesis of a mitochondrial RNA-processing enzyme.
    Stribinskis V; Gao GJ; Sulo P; Dang YL; Martin NC
    Mol Cell Biol; 1996 Jul; 16(7):3429-36. PubMed ID: 8668158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae.
    Villa T; Ceradini F; Bozzoni I
    Mol Cell Biol; 2000 Feb; 20(4):1311-20. PubMed ID: 10648617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Splicing of yeast aI5beta group I intron requires SUV3 to recycle MRS1 via mitochondrial degradosome-promoted decay of excised intron ribonucleoprotein (RNP).
    Turk EM; Caprara MG
    J Biol Chem; 2010 Mar; 285(12):8585-94. PubMed ID: 20064926
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs.
    van Hoof A; Lennertz P; Parker R
    Mol Cell Biol; 2000 Jan; 20(2):441-52. PubMed ID: 10611222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA degradation paths in a 12-subunit nuclear exosome complex.
    Makino DL; Schuch B; Stegmann E; Baumgärtner M; Basquin C; Conti E
    Nature; 2015 Aug; 524(7563):54-8. PubMed ID: 26222026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex.
    Kowalinski E; Kögel A; Ebert J; Reichelt P; Stegmann E; Habermann B; Conti E
    Mol Cell; 2016 Jul; 63(1):125-34. PubMed ID: 27345150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex.
    Makino DL; Baumgärtner M; Conti E
    Nature; 2013 Mar; 495(7439):70-5. PubMed ID: 23376952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A small stem loop element directs internal initiation of the URE2 internal ribosome entry site in Saccharomyces cerevisiae.
    Reineke LC; Komar AA; Caprara MG; Merrick WC
    J Biol Chem; 2008 Jul; 283(27):19011-25. PubMed ID: 18460470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae.
    Schmitt ME; Clayton DA
    Mol Cell Biol; 1993 Dec; 13(12):7935-41. PubMed ID: 8247008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alteration of a mitochondrial tRNA precursor 5' leader abolishes its cleavage by yeast mitochondrial RNase P.
    Hollingsworth MJ; Martin NC
    Nucleic Acids Res; 1987 Nov; 15(21):8845-60. PubMed ID: 3317274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel family of RNA tetraloop structure forms the recognition site for Saccharomyces cerevisiae RNase III.
    Wu H; Yang PK; Butcher SE; Kang S; Chanfreau G; Feigon J
    EMBO J; 2001 Dec; 20(24):7240-9. PubMed ID: 11743000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway.
    Samanta MP; Tongprasit W; Sethi H; Chin CS; Stolc V
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4192-7. PubMed ID: 16537507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
    Lewin AS; Thomas J; Tirupati HK
    Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6.
    Garland W; Feigenbutz M; Turner M; Mitchell P
    RNA; 2013 Dec; 19(12):1659-68. PubMed ID: 24106327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Suppression of a mitochondrial point mutation in a tRNA gene can cast light on the mechanisms of 3' end-processing.
    Rinaldi T; Francisci S; Zennaro E; Frontali L; Bolotin-Fukuhara M
    Curr Genet; 1994 May; 25(5):451-5. PubMed ID: 7521797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in
    Gillespie A; Gabunilas J; Jen JC; Chanfreau GF
    RNA; 2017 Apr; 23(4):466-472. PubMed ID: 28053271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential RNA degradation pathways provide a fail-safe mechanism to limit the accumulation of unspliced transcripts in Saccharomyces cerevisiae.
    Sayani S; Chanfreau GF
    RNA; 2012 Aug; 18(8):1563-72. PubMed ID: 22753783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Yeast as a model of human mitochondrial tRNA base substitutions: investigation of the molecular basis of respiratory defects.
    Montanari A; Besagni C; De Luca C; Morea V; Oliva R; Tramontano A; Bolotin-Fukuhara M; Frontali L; Francisci S
    RNA; 2008 Feb; 14(2):275-83. PubMed ID: 18065717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate recognition by ribonucleoprotein ribonuclease MRP.
    Esakova O; Perederina A; Quan C; Berezin I; Krasilnikov AS
    RNA; 2011 Feb; 17(2):356-64. PubMed ID: 21173200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.