These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 24143898)

  • 1. Evanescent wave-based particle tracking velocimetry for nanochannel flows.
    Kazoe Y; Iseki K; Mawatari K; Kitamori T
    Anal Chem; 2013 Nov; 85(22):10780-6. PubMed ID: 24143898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of nanoparticles in extended nanospace measured by evanescent wave-based particle velocimetry.
    Kazoe Y; Mawatari K; Kitamori T
    Anal Chem; 2015 Apr; 87(8):4087-91. PubMed ID: 25806827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-Resolution Defocusing Nanoparticle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows.
    Kazoe Y; Shibata K; Kitamori T
    Anal Chem; 2021 Oct; 93(39):13260-13267. PubMed ID: 34559530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence.
    Kazoe Y; Mawatari K; Sugii Y; Kitamori T
    Anal Chem; 2011 Nov; 83(21):8152-7. PubMed ID: 21942883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules.
    Gai H; Li Y; Silber-Li Z; Ma Y; Lin B
    Lab Chip; 2005 Apr; 5(4):443-9. PubMed ID: 15791343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.
    Cevheri N; Yoda M
    Electrophoresis; 2013 Jul; 34(13):1950-6. PubMed ID: 23592366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of the effect of external electric fields on interfacial dynamics of colloidal particles.
    Kazoe Y; Yoda M
    Langmuir; 2011 Sep; 27(18):11481-8. PubMed ID: 21744873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Wall Velocity and Temperature Measurements in the Meniscus Region for Staggered Glass Beads.
    Wang Z; Zhou L; Du X; Yang Y
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3043-7. PubMed ID: 26353533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of pressure-driven water flows in nanofluidic channels by mass flowmetry.
    Kazoe Y; Kubori S; Morikawa K; Mawatari K; Kitamori T
    Anal Sci; 2022 Feb; 38(2):281-287. PubMed ID: 35314973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry.
    Day SW; Higham TE; Cheer AY; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of C-reactive protein in evanescent wave field using microparticle-tracking velocimetry.
    Fan YJ; Sheen HJ; Liu YH; Tsai JF; Wu TH; Wu KC; Lin S
    Langmuir; 2010 Sep; 26(17):13751-4. PubMed ID: 20672814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticle image velocimetry at topologically structured surfaces.
    Parikesit GO; Guasto JS; Girardo S; Mele E; Stabile R; Pisignano D; Lindken R; Westerweel J
    Biomicrofluidics; 2009 Dec; 3(4):44111. PubMed ID: 20216973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions.
    Schembri F; Bodiguel H; Colin A
    Soft Matter; 2015 Jan; 11(1):169-78. PubMed ID: 25376855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-velocity transport of nanoparticles through 1-D nanochannels at very large particle to channel diameter ratios.
    Vankrunkelsven S; Clicq D; Pappaert K; Baron GV; Desmet G
    Anal Chem; 2004 Jun; 76(11):3005-11. PubMed ID: 15167775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel far-field nanoscopic velocimetry for nanofluidics.
    Kuang C; Wang G
    Lab Chip; 2010 Jan; 10(2):240-5. PubMed ID: 20066253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The intensity correlation function in evanescent wave scattering.
    Cichocki B; Wajnryb E; Bławzdziewicz J; Dhont JK; Lang PR
    J Chem Phys; 2010 Feb; 132(7):074704. PubMed ID: 20170241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle tracking techniques for electrokinetic microchannel flows.
    Devasenathipathy S; Santiago JG; Takehara K
    Anal Chem; 2002 Aug; 74(15):3704-13. PubMed ID: 12175157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatically confined nanoparticle interactions and dynamics.
    Eichmann SL; Anekal SG; Bevan MA
    Langmuir; 2008 Feb; 24(3):714-21. PubMed ID: 18177058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ion motion on zeta-potential distribution at microchannel wall obtained from nanoscale laser-induced fluorescence.
    Kazoe Y; Sato Y
    Anal Chem; 2007 Sep; 79(17):6727-33. PubMed ID: 17668930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.