BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24143965)

  • 1. Adsorption of acid and polymer coated nanoparticles: a statistical thermodynamics approach.
    Nap RJ; Park Y; Wong JY; Szleifer I
    Langmuir; 2013 Nov; 29(47):14482-93. PubMed ID: 24143965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of superparamagnetic iron oxide nanoparticles on silica and calcium carbonate sand.
    Park YC; Paulsen J; Nap RJ; Whitaker RD; Mathiyazhagan V; Song YQ; Hürlimann M; Szleifer I; Wong JY
    Langmuir; 2014 Jan; 30(3):784-92. PubMed ID: 24393031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of heterogeneously charged nanoparticles on a variably charged surface by the extended surface complexation approach: charge regulation, chemical heterogeneity, and surface complexation.
    Saito T; Koopal LK; Nagasaki S; Tanaka S
    J Phys Chem B; 2008 Feb; 112(5):1339-49. PubMed ID: 18189380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials.
    Mudunkotuwa IA; Pettibone JM; Grassian VH
    Environ Sci Technol; 2012 Jul; 46(13):7001-10. PubMed ID: 22280489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake.
    Pelaz B; del Pino P; Maffre P; Hartmann R; Gallego M; Rivera-Fernández S; de la Fuente JM; Nienhaus GU; Parak WJ
    ACS Nano; 2015 Jul; 9(7):6996-7008. PubMed ID: 26079146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of superparamagnetic iron oxide nanoparticles at different pH values: experimental and theoretical analysis.
    Park Y; Whitaker RD; Nap RJ; Paulsen JL; Mathiyazhagan V; Doerrer LH; Song YQ; Hürlimann MD; Szleifer I; Wong JY
    Langmuir; 2012 Apr; 28(15):6246-55. PubMed ID: 22409538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attaching DNA to nanoceria: regulating oxidase activity and fluorescence quenching.
    Pautler R; Kelly EY; Huang PJ; Cao J; Liu B; Liu J
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6820-5. PubMed ID: 23863107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration.
    Wang G; Kucharski C; Lin X; Uludağ H
    J Drug Target; 2010 Sep; 18(8):611-26. PubMed ID: 20158316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake.
    Moros M; Hernáez B; Garet E; Dias JT; Sáez B; Grazú V; González-Fernández A; Alonso C; de la Fuente JM
    ACS Nano; 2012 Feb; 6(2):1565-77. PubMed ID: 22214244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-step process to produce surface-functionalized polymeric nanoparticles.
    Sussman EM; Clarke MB; Shastri VP
    Langmuir; 2007 Nov; 23(24):12275-9. PubMed ID: 17963413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge.
    Hühn D; Kantner K; Geidel C; Brandholt S; De Cock I; Soenen SJ; Rivera Gil P; Montenegro JM; Braeckmans K; Müllen K; Nienhaus GU; Klapper M; Parak WJ
    ACS Nano; 2013 Apr; 7(4):3253-63. PubMed ID: 23566380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption energies of poly(ethylene oxide)-based surfactants and nanoparticles on an air-water surface.
    Zell ZA; Isa L; Ilg P; Leal LG; Squires TM
    Langmuir; 2014 Jan; 30(1):110-9. PubMed ID: 24328531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine adsorption on TiO2 nanoparticles: an integrated spectroscopic, thermodynamic, and molecular-based approach toward understanding nano-bio interactions.
    Mudunkotuwa IA; Grassian VH
    Langmuir; 2014 Jul; 30(29):8751-60. PubMed ID: 24978817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translocation of a nanoparticle through a fluidic channel: the role of grafted polymers.
    Su J; Yang K; Guo H
    Nanotechnology; 2014 May; 25(18):185703. PubMed ID: 24736046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable aqueous nanoparticle film assemblies with covalent and charged polymer linking networks.
    Russell LE; Galyean AA; Notte SM; Leopold MC
    Langmuir; 2007 Jul; 23(14):7466-71. PubMed ID: 17559246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.