These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24143971)

  • 1. Network analysis to uncover the structural communication in GPCRs.
    Fanelli F; Felline A; Raimondi F
    Methods Cell Biol; 2013; 117():43-61. PubMed ID: 24143971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure network analysis to gain insights into GPCR function.
    Fanelli F; Felline A; Raimondi F; Seeber M
    Biochem Soc Trans; 2016 Apr; 44(2):613-8. PubMed ID: 27068978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study.
    Raimondi F; Felline A; Seeber M; Mariani S; Fanelli F
    J Chem Theory Comput; 2013 May; 9(5):2504-18. PubMed ID: 26583738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
    Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K
    FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor.
    Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA
    Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding rhodopsin mutations linked to the retinitis pigmentosa disease: a QM/MM and DFT/MRCI study.
    Hernández-Rodríguez EW; Sánchez-García E; Crespo-Otero R; Montero-Alejo AL; Montero LA; Thiel W
    J Phys Chem B; 2012 Jan; 116(3):1060-76. PubMed ID: 22126625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predisposition of the dark state of rhodopsin to functional changes in structure.
    Isin B; Rader AJ; Dhiman HK; Klein-Seetharaman J; Bahar I
    Proteins; 2006 Dec; 65(4):970-83. PubMed ID: 17009319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a model of the blue cone pigment based on the wild type rhodopsin structure with QM/MM methods.
    Frähmcke JS; Wanko M; Elstner M
    J Phys Chem B; 2012 Mar; 116(10):3313-21. PubMed ID: 22332756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional water molecules in rhodopsin activation.
    Sun X; Ågren H; Tu Y
    J Phys Chem B; 2014 Sep; 118(37):10863-73. PubMed ID: 25166739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the intramolecular signal transduction of G-protein coupled receptors.
    Lee Y; Choi S; Hyeon C
    Proteins; 2014 May; 82(5):727-43. PubMed ID: 24166702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WebPSN: a web server for high-throughput investigation of structural communication in biomacromolecules.
    Seeber M; Felline A; Raimondi F; Mariani S; Fanelli F
    Bioinformatics; 2015 Mar; 31(5):779-81. PubMed ID: 25355786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Molecular Mechanisms of Paradoxical Activation in the BRAF Kinase Dimers: Atomistic Simulations of Conformational Dynamics and Modeling of Allosteric Communication Networks and Signaling Pathways.
    Tse A; Verkhivker GM
    PLoS One; 2016; 11(11):e0166583. PubMed ID: 27861609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR).
    Floquet N; M'Kadmi C; Perahia D; Gagne D; Bergé G; Marie J; Banères JL; Galleyrand JC; Fehrentz JA; Martinez J
    J Mol Biol; 2010 Jan; 395(4):769-84. PubMed ID: 19782690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the structural communication in supramolecular complexes involving GPCRs.
    Fanelli F
    Methods Mol Biol; 2012; 914():319-36. PubMed ID: 22976036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific labeling of genetically encoded azido groups for multicolor, single-molecule fluorescence imaging of GPCRs.
    Tian H; Sakmar TP; Huber T
    Methods Cell Biol; 2013; 117():267-303. PubMed ID: 24143983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures.
    Choe HW; Park JH; Kim YJ; Ernst OP
    Neuropharmacology; 2011 Jan; 60(1):52-7. PubMed ID: 20708633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations.
    Rakoczy EP; Kiel C; McKeone R; Stricher F; Serrano L
    J Mol Biol; 2011 Jan; 405(2):584-606. PubMed ID: 21094163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes.
    Kaneshige Y; Hayashi F; Morigaki K; Tanimoto Y; Yamashita H; Fujii M; Awazu A
    PLoS One; 2020; 15(2):e0226123. PubMed ID: 32032370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.