BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24144006)

  • 21. A sulfur-based transport pathway in Cu+-ATPases.
    Mattle D; Zhang L; Sitsel O; Pedersen LT; Moncelli MR; Tadini-Buoninsegni F; Gourdon P; Rees DC; Nissen P; Meloni G
    EMBO Rep; 2015 Jun; 16(6):728-40. PubMed ID: 25956886
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR backbone resonance assignments of the N, P domains of CopA, a copper-transporting ATPase, in the apo and ligand bound states.
    Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R
    Biomol NMR Assign; 2015 Apr; 9(1):129-33. PubMed ID: 24706033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.
    Bredeston LM; González Flecha FL
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1471-8. PubMed ID: 27086711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of Archaeoglobus fulgidus Cu(+)-ATPase CopA by cysteine.
    Yang Y; Mandal AK; Bredeston LM; González-Flecha FL; Argüello JM
    Biochim Biophys Acta; 2007 Mar; 1768(3):495-501. PubMed ID: 17064659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function.
    Raimunda D; González-Guerrero M; Leeber BW; Argüello JM
    Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of a copper pump suggests a regulatory role for its metal-binding domain.
    Wu CC; Rice WJ; Stokes DL
    Structure; 2008 Jun; 16(6):976-85. PubMed ID: 18547529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue.
    Dutta SJ; Liu J; Hou Z; Mitra B
    Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins.
    Hollenstein K; Comellas-Bigler M; Bevers LE; Feiters MC; Meyer-Klaucke W; Hagedoorn PL; Locher KP
    J Biol Inorg Chem; 2009 Jun; 14(5):663-72. PubMed ID: 19234723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of ion-selectivity determinants in heavy-metal transport P1B-type ATPases.
    Argüello JM
    J Membr Biol; 2003 Sep; 195(2):93-108. PubMed ID: 14692449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger.
    Nishizawa T; Kita S; Maturana AD; Furuya N; Hirata K; Kasuya G; Ogasawara S; Dohmae N; Iwamoto T; Ishitani R; Nureki O
    Science; 2013 Jul; 341(6142):168-72. PubMed ID: 23704374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal stability of CopA, a polytopic membrane protein from the hyperthermophile Archaeoglobus fulgidus.
    Cattoni DI; González Flecha FL; Argüello JM
    Arch Biochem Biophys; 2008 Mar; 471(2):198-206. PubMed ID: 18187034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of the two transmembrane Cu+ transport sites of the Cu+ -ATPases.
    González-Guerrero M; Eren E; Rawat S; Stemmler TL; Argüello JM
    J Biol Chem; 2008 Oct; 283(44):29753-9. PubMed ID: 18772137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus.
    Völlmecke C; Drees SL; Reimann J; Albers SV; Lübben M
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1622-1633. PubMed ID: 22361944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reaction cycle of Thermotoga maritima copper ATPase and conformational characterization of catalytically deficient mutants.
    Hatori Y; Lewis D; Toyoshima C; Inesi G
    Biochemistry; 2009 Jun; 48(22):4871-80. PubMed ID: 19364131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper transfer to the N-terminal domain of the Wilson disease protein (ATP7B): X-ray absorption spectroscopy of reconstituted and chaperone-loaded metal binding domains and their interaction with exogenous ligands.
    Ralle M; Lutsenko S; Blackburn NJ
    J Inorg Biochem; 2004 May; 98(5):765-74. PubMed ID: 15134922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The N-terminal metal-binding site 2 of the Wilson's Disease Protein plays a key role in the transfer of copper from Atox1.
    Walker JM; Huster D; Ralle M; Morgan CT; Blackburn NJ; Lutsenko S
    J Biol Chem; 2004 Apr; 279(15):15376-84. PubMed ID: 14754885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assay of Copper Transfer and Binding to P1B-ATPases.
    Padilla-Benavides T; Argüello JM
    Methods Mol Biol; 2016; 1377():267-77. PubMed ID: 26695039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae.
    Odermatt A; Suter H; Krapf R; Solioz M
    J Biol Chem; 1993 Jun; 268(17):12775-9. PubMed ID: 8048974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cu(I) binding and transfer by the N terminus of the Wilson disease protein.
    Yatsunyk LA; Rosenzweig AC
    J Biol Chem; 2007 Mar; 282(12):8622-31. PubMed ID: 17229731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico modeling of the Menkes copper-translocating P-type ATPase 3rd metal binding domain predicts that phosphorylation regulates copper-binding.
    Veldhuis NA; Kuiper MJ; Dobson RC; Pearson RB; Camakaris J
    Biometals; 2011 Jun; 24(3):477-87. PubMed ID: 21258844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.