These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 24144173)
1. Optimal ozone reduction policy design using adjoint-based NOx marginal damage information. Mesbah SM; Hakami A; Schott S Environ Sci Technol; 2013; 47(23):13528-35. PubMed ID: 24144173 [TBL] [Abstract][Full Text] [Related]
2. Improving NO(x) cap-and-trade system with adjoint-based emission exchange rates. Mesbah SM; Hakami A; Schott S Environ Sci Technol; 2012 Nov; 46(21):11905-12. PubMed ID: 23050674 [TBL] [Abstract][Full Text] [Related]
3. Optimal Ozone Control with Inclusion of Spatiotemporal Marginal Damages and Electricity Demand. Mesbah SM; Hakami A; Schott S Environ Sci Technol; 2015 Jul; 49(13):7870-8. PubMed ID: 26053406 [TBL] [Abstract][Full Text] [Related]
4. Cost-effective reduction of NOx emissions from electricity generation. Burtraw D; Palmer K; Bharvirkar R; Paul A J Air Waste Manag Assoc; 2001 Oct; 51(10):1476-89. PubMed ID: 11686253 [TBL] [Abstract][Full Text] [Related]
5. Diminishing Returns or Compounding Benefits of Air Pollution Control? The Case of NOx and Ozone. Pappin AJ; Mesbah SM; Hakami A; Schott S Environ Sci Technol; 2015 Aug; 49(16):9548-56. PubMed ID: 26207850 [TBL] [Abstract][Full Text] [Related]
6. Expected ozone benefits of reducing nitrogen oxide (NO Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304 [TBL] [Abstract][Full Text] [Related]
7. Precursor reductions and ground-level ozone in the Continental United States. Hidy GM; Blanchard CL J Air Waste Manag Assoc; 2015 Oct; 65(10):1261-82. PubMed ID: 26252366 [TBL] [Abstract][Full Text] [Related]
8. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction. McNevin TF J Air Waste Manag Assoc; 2016 Jan; 66(1):66-75. PubMed ID: 26563500 [TBL] [Abstract][Full Text] [Related]
9. Influence of population density and temporal variations in emissions on the air duality benefits of NOx emission trading. Nobel CE; McDonald-Buller EC; Kimura Y; Lumbley KE; Allen DT Environ Sci Technol; 2002 Aug; 36(16):3465-73. PubMed ID: 12214636 [TBL] [Abstract][Full Text] [Related]
10. Air quality co-benefits of subnational carbon policies. Thompson TM; Rausch S; Saari RK; Selin NE J Air Waste Manag Assoc; 2016 Oct; 66(10):988-1002. PubMed ID: 27216236 [TBL] [Abstract][Full Text] [Related]
11. Attainment vs exposure: ozone metric responses to source-specific NOx controls using adjoint sensitivity analysis. Pappin AJ; Hakami A Environ Sci Technol; 2013; 47(23):13519-27. PubMed ID: 24143935 [TBL] [Abstract][Full Text] [Related]
12. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
13. Projected ozone trends and changes in the ozone-precursor relationship in the South Coast Air Basin in response to varying reductions of precursor emissions. Fujita EM; Campbell DE; Stockwell WR; Saunders E; Fitzgerald R; Perea R J Air Waste Manag Assoc; 2016 Feb; 66(2):201-14. PubMed ID: 26514212 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Management of NOx and SO2 Emissions in the Texas and Mid-Atlantic Electric Power Systems and Implications for Air Quality. McDonald-Buller E; Kimura Y; Craig M; McGaughey G; Allen D; Webster M Environ Sci Technol; 2016 Feb; 50(3):1611-9. PubMed ID: 26727552 [TBL] [Abstract][Full Text] [Related]
15. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States. Tong DQ; Muller NZ; Kan H; Mendelsohn RO Environ Int; 2009 Nov; 35(8):1109-17. PubMed ID: 19656569 [TBL] [Abstract][Full Text] [Related]
16. Demand response, behind-the-meter generation and air quality. Zhang X; Zhang KM Environ Sci Technol; 2015 Feb; 49(3):1260-7. PubMed ID: 25556780 [TBL] [Abstract][Full Text] [Related]
17. Source attribution of health benefits from air pollution abatement in Canada and the United States: an adjoint sensitivity analysis. Pappin AJ; Hakami A Environ Health Perspect; 2013 May; 121(5):572-9. PubMed ID: 23434744 [TBL] [Abstract][Full Text] [Related]
18. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Wang N; Lyu XP; Deng XJ; Guo H; Deng T; Li Y; Yin CQ; Li F; Wang SQ Sci Total Environ; 2016 Dec; 573():1554-1565. PubMed ID: 27642074 [TBL] [Abstract][Full Text] [Related]
19. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature. Zhao Y; McElroy MB; Xing J; Duan L; Nielsen CP; Lei Y; Hao J Sci Total Environ; 2011 Nov; 409(24):5177-87. PubMed ID: 21944199 [TBL] [Abstract][Full Text] [Related]
20. Intercomparison of chemical mechanisms for air quality policy formulation and assessment under North American conditions. Derwent R J Air Waste Manag Assoc; 2017 Jul; 67(7):789-796. PubMed ID: 28278034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]