BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24144417)

  • 1. Drug resistance in leishmaniasis: current drug-delivery systems and future perspectives.
    Yasinzai M; Khan M; Nadhman A; Shahnaz G
    Future Med Chem; 2013 Oct; 5(15):1877-88. PubMed ID: 24144417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of drug action and drug resistance in Leishmania as basis for therapeutic target identification and design of antileishmanial modulators.
    Loiseau PM; Bories C
    Curr Top Med Chem; 2006; 6(5):539-50. PubMed ID: 16719806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leishmaniasis: drugs in the clinic, resistance and new developments.
    Ouellette M; Drummelsmith J; Papadopoulou B
    Drug Resist Updat; 2004; 7(4-5):257-66. PubMed ID: 15533763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liposomal formulations in the pharmacological treatment of leishmaniasis: a review.
    Ortega V; Giorgio S; de Paula E
    J Liposome Res; 2017 Sep; 27(3):234-248. PubMed ID: 28874072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.
    Borborema SE; Schwendener RA; Osso JA; de Andrade HF; do Nascimento N
    Int J Antimicrob Agents; 2011 Oct; 38(4):341-7. PubMed ID: 21783345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leishmaniasis: efflux pumps and chemoresistance.
    Leandro C; Campino L
    Int J Antimicrob Agents; 2003 Sep; 22(3):352-7. PubMed ID: 13678842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promising nanotherapy in treating leishmaniasis.
    de Souza A; Marins DSS; Mathias SL; Monteiro LM; Yukuyama MN; Scarim CB; Löbenberg R; Bou-Chacra NA
    Int J Pharm; 2018 Aug; 547(1-2):421-431. PubMed ID: 29886097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis.
    Sarwar HS; Ashraf S; Akhtar S; Sohail MF; Hussain SZ; Rafay M; Yasinzai M; Hussain I; Shahnaz G
    Nanomedicine (Lond); 2018 Jan; 13(1):25-41. PubMed ID: 29173059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topoisomerase 1B as a target against leishmaniasis.
    D'Annessa I; Castelli S; Desideri A
    Mini Rev Med Chem; 2015; 15(3):203-10. PubMed ID: 25769969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Nanosystems and Strategies for Managing Leishmaniasis.
    Vaghela R; Kulkarni PK; Osmani RAM; Bhosale RR; Naga Sravan Kumar Varma V
    Curr Drug Targets; 2017; 18(14):1598-1621. PubMed ID: 27033193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial peptides for leishmaniasis.
    Cobb SL; Denny PW
    Curr Opin Investig Drugs; 2010 Aug; 11(8):868-75. PubMed ID: 20721829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Therapeutics, Their Problems and Thiol Metabolism as Potential Drug Targets in Leishmaniasis.
    Singh K; Garg G; Ali V
    Curr Drug Metab; 2016; 17(9):897-919. PubMed ID: 27549807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New delivery strategies for the old pentavalent antimonial drugs.
    Frézard F; Demicheli C
    Expert Opin Drug Deliv; 2010 Dec; 7(12):1343-58. PubMed ID: 21029028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery Systems.
    Wagner V; Minguez-Menendez A; Pena J; Fernández-Prada C
    Curr Pharm Des; 2019; 25(14):1582-1592. PubMed ID: 31223081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnology based solutions for anti-leishmanial impediments: a detailed insight.
    Jamshaid H; Din FU; Khan GM
    J Nanobiotechnology; 2021 Apr; 19(1):106. PubMed ID: 33858436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chitosan Contribution to Therapeutic and Vaccinal Approaches for the Control of Leishmaniasis.
    Loiseau PM; Pomel S; Croft SL
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32916994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnological Strategies for Treatment of Leishmaniasis--A Review.
    de Almeida L; Terumi Fujimura A; Del Cistia ML; Fonseca-Santos B; Braga Imamura K; Michels PAM; Chorilli M; Graminha MAS
    J Biomed Nanotechnol; 2017 Feb; 13(2):117-33. PubMed ID: 29376626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of liposomal nanoformulations in antileishmania therapy: challenges and perspectives.
    Téllez J; Echeverry MC; Romero I; Guatibonza A; Santos Ramos G; Borges De Oliveira AC; Frézard F; Demicheli C
    J Liposome Res; 2021 Jun; 31(2):169-176. PubMed ID: 32228210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leishmaniasis: current treatment and prospects for new drugs and vaccines.
    Kedzierski L; Sakthianandeswaren A; Curtis JM; Andrews PC; Junk PC; Kedzierska K
    Curr Med Chem; 2009; 16(5):599-614. PubMed ID: 19199925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The overexpression of genes of thiol metabolism contribute to drug resistance in clinical isolates of visceral leishmaniasis (kala azar) in India.
    Singh N; Chatterjee M; Sundar S
    Parasit Vectors; 2014 Dec; 7():596. PubMed ID: 25515494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.