These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24144455)

  • 21. Rambutan-like FeCO3 hollow microspheres: facile preparation and superior lithium storage performances.
    Zhong Y; Su L; Yang M; Wei J; Zhou Z
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11212-7. PubMed ID: 24066809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nano-GeTe Embedded in a Three-Dimensional Carbon Sponge for Flexible Li-Ion and Na-Ion Battery Anodes.
    Zeng T; Feng D; Peng Q; Liu Q; Xi G; Chen G
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15178-15189. PubMed ID: 33754688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries.
    Wan Z; Shao J; Yun J; Zheng H; Gao T; Shen M; Qu Q; Zheng H
    Small; 2014 Dec; 10(23):4975-81. PubMed ID: 25045113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binder-Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries.
    Adams RA; Syu JM; Zhao Y; Lo CT; Varma A; Pol VG
    ACS Appl Mater Interfaces; 2017 May; 9(21):17872-17881. PubMed ID: 28485975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomass-Derived Porous Carbon from Agar as an Anode Material for Lithium-Ion Batteries.
    Issatayev N; Kalimuldina G; Nurpeissova A; Bakenov Z
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries.
    Bhattacharjya D; Park HY; Kim MS; Choi HS; Inamdar SN; Yu JS
    Langmuir; 2014 Jan; 30(1):318-24. PubMed ID: 24345084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity.
    Luo C; Xu Y; Zhu Y; Liu Y; Zheng S; Liu Y; Langrock A; Wang C
    ACS Nano; 2013 Sep; 7(9):8003-10. PubMed ID: 23944942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superior long-term cycling stability of SnO2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries.
    Kim JC; Hwang IS; Seo SD; Lee GH; Shim HW; Park KS; Kim DW
    Nanotechnology; 2012 Nov; 23(46):465402. PubMed ID: 23092968
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system.
    Choi HS; Kim T; Im JH; Park CR
    Nanotechnology; 2011 Oct; 22(40):405402. PubMed ID: 21911931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.
    Wang D; Zhao Y; Xu X; Hercule KM; Yan M; An Q; Tian X; Xu J; Qu L; Mai L
    Nanoscale; 2014 Jul; 6(14):8124-9. PubMed ID: 24921199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coaxial MoS₂@Carbon Hybrid Fibers: A Low-Cost Anode Material for High-Performance Li-Ion Batteries.
    Zhou R; Wang JG; Liu H; Liu H; Jin D; Liu X; Shen C; Xie K; Wei B
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A hierarchical hybrid design for high performance tin based Li-ion battery anodes.
    Song X
    Nanotechnology; 2013 May; 24(20):205401. PubMed ID: 23598519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A binder-free Ge-nanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries.
    Hwang IS; Kim JC; Seo SD; Lee S; Lee JH; Kim DW
    Chem Commun (Camb); 2012 Jul; 48(56):7061-3. PubMed ID: 22684325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and Application of Si/Carbon Nanofiber Composites Based on Ni and Mo Catalysts for Anode Material of Lithium Secondary Batteries.
    Jang E; Park HK; Lee CS
    J Nanosci Nanotechnol; 2016 May; 16(5):4792-802. PubMed ID: 27483824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries.
    Wu ZS; Ren W; Xu L; Li F; Cheng HM
    ACS Nano; 2011 Jul; 5(7):5463-71. PubMed ID: 21696205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning Porosity and Surface Area in Mesoporous Silicon for Application in Li-Ion Battery Electrodes.
    Cook JB; Kim HS; Lin TC; Robbennolt S; Detsi E; Dunn BS; Tolbert SH
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19063-19073. PubMed ID: 28485570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tandem structure of porous silicon film on single-walled carbon nanotube macrofilms for lithium-ion battery applications.
    Rong J; Masarapu C; Ni J; Zhang Z; Wei B
    ACS Nano; 2010 Aug; 4(8):4683-90. PubMed ID: 20731447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.