These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24144455)

  • 61. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries.
    Ma X; Liu M; Gan L; Tripathi PK; Zhao Y; Zhu D; Xu Z; Chen L
    Phys Chem Chem Phys; 2014 Mar; 16(9):4135-42. PubMed ID: 24448656
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries.
    Petkovich ND; Rudisill SG; Wilson BE; Mukherjee A; Stein A
    Inorg Chem; 2014 Jan; 53(2):1100-12. PubMed ID: 24392955
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode.
    Bin DS; Lin XJ; Sun YG; Xu YS; Zhang K; Cao AM; Wan LJ
    J Am Chem Soc; 2018 Jun; 140(23):7127-7134. PubMed ID: 29771119
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Advanced Sodium Ion Battery Anode Constructed via Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder.
    Song J; Yu Z; Gordin ML; Li X; Peng H; Wang D
    ACS Nano; 2015 Dec; 9(12):11933-41. PubMed ID: 26498828
    [TBL] [Abstract][Full Text] [Related]  

  • 65. CoO-carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties.
    Zhang M; Uchaker E; Hu S; Zhang Q; Wang T; Cao G; Li J
    Nanoscale; 2013 Dec; 5(24):12342-9. PubMed ID: 24162555
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries.
    Ban C; Xie M; Sun X; Travis JJ; Wang G; Sun H; Dillon AC; Lian J; George SM
    Nanotechnology; 2013 Oct; 24(42):424002. PubMed ID: 24067324
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries.
    Reddy MV; Prithvi G; Loh KP; Chowdari BV
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):680-90. PubMed ID: 24325322
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multidimensional jagged SnSb/C/DLC nanofibers fabricated by AP-PECVD method for Li-ion battery anode.
    Tang H; Xia X
    Nanotechnology; 2020 May; 31(20):205401. PubMed ID: 31940597
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Vapor Deposition Red Phosphorus to Prepare Nitrogen-Doped Ti
    Zhang S; Ying H; Guo R; Yang W; Han WQ
    J Phys Chem Lett; 2019 Nov; 10(21):6446-6454. PubMed ID: 31589051
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Steam-etched spherical carbon/sulfur composite with high sulfur capacity and long cycle life for Li/S battery application.
    Wang M; Zhang H; Wang Q; Qu C; Li X; Zhang H
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3590-9. PubMed ID: 25621785
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Hydrothermally Synthesized Li₄Ti
    Zhao XC; Yang P; Ding T; Yang LJ; Mai X; Chen H; Wang G; Ma Y; Wang X; Murugadoss V; Angaiah S; Wang YP; Liu H; Guo ZH
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7387-7391. PubMed ID: 31039901
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Superior Potassium-Ion Anode Material from Pitch-based Activated Carbon Fibers with Hierarchical Pore Structure Prepared by Metal Catalytic Activation.
    Wei W; Wang F; Yang J; Zou J; Li J; Shi K
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6557-6565. PubMed ID: 33502155
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Spontaneous hybrids of graphene and carbon nanotube arrays at the liquid-gas interface for Li-ion battery anodes.
    Kim H; Kim J; Jeong HS; Kim H; Lee H; Ha JM; Choi SM; Kim TH; Nah YC; Shin TJ; Bang J; Satija SK; Koo J
    Chem Commun (Camb); 2018 May; 54(41):5229-5232. PubMed ID: 29726560
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Riemannian Surface on Carbon Anodes Enables Li-Ion Storage at -35 °C.
    Lu Z; Wang J; Cheng X; Xie W; Gao Z; Zhang X; Xu Y; Yi D; Yang Y; Wang X; Yao J
    ACS Cent Sci; 2022 Jul; 8(7):905-914. PubMed ID: 35912350
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Carbon-Coated Germanium Nanowires on Carbon Nanofibers as Self-Supported Electrodes for Flexible Lithium-Ion Batteries.
    Li W; Li M; Yang Z; Xu J; Zhong X; Wang J; Zeng L; Liu X; Jiang Y; Wei X; Gu L; Yu Y
    Small; 2015 Jun; 11(23):2762-7. PubMed ID: 25644610
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes.
    Jessl S; Engelke S; Copic D; Baumberg JJ; De Volder M
    ACS Appl Nano Mater; 2021 Jun; 4(6):6299-6305. PubMed ID: 34240009
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hollow Nanotubes of N-Doped Carbon on CoS.
    Chen Y; Li X; Park K; Zhou L; Huang H; Mai YW; Goodenough JB
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15831-15834. PubMed ID: 27865049
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Natural Halloysite-Templated Synthesis of Highly Graphitic Boron-Doped Hollow Carbon Nanocapsule Webs.
    Chen F; Ma L; Li B; Jiang P; Song Z; Huang L
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889582
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Enabling a Large Accessible Surface Area of a Pore-Designed Hydrophilic Carbon Nanofiber Fabric for Ultrahigh Capacitive Deionization.
    Gong X; Zhang S; Luo W; Guo N; Wang L; Jia D; Zhao Z; Feng S; Jia L
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49586-49595. PubMed ID: 33095001
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Amorphous Carbon Chips Li-Ion Battery Anodes Produced through Polyethylene Waste Upcycling.
    Villagómez-Salas S; Manikandan P; Acuña Guzmán SF; Pol VG
    ACS Omega; 2018 Dec; 3(12):17520-17527. PubMed ID: 31458356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.