BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24144617)

  • 1. Accurate determination of ⁴¹Ca concentrations in spent resins from the nuclear industry by accelerator mass spectrometry.
    Nottoli E; Bourlès D; Bienvenu P; Labet A; Arnold M; Bertaux M
    Appl Radiat Isot; 2013 Dec; 82():340-6. PubMed ID: 24144617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate determination of ¹²⁹I concentrations and ¹²⁹I/¹³⁷Cs ratios in spent nuclear resins by Accelerator Mass Spectrometry.
    Nottoli E; Bienvenu P; Labet A; Bourlès D; Arnold M; Bertaux M
    Appl Radiat Isot; 2014 Apr; 86():90-6. PubMed ID: 24525301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of plasma off-gas treatment from spent ion exchange resin pyrolysis.
    Castro HA; Luca V; Bianchi HL
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21403-21410. PubMed ID: 28337628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry.
    Chamizo E; Jiménez-Ramos MC; Wacker L; Vioque I; Calleja A; García-León M; García-Tenorio R
    Anal Chim Acta; 2008 Jan; 606(2):239-45. PubMed ID: 18082656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples.
    Hou X; Roos P
    Anal Chim Acta; 2008 Feb; 608(2):105-39. PubMed ID: 18215644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective determination of the long-lived nuclide 41Ca in nuclear reactor bioshield concretes: comparison of liquid scintillation counting and accelerator mass spectrometry.
    Warwick PE; Croudace IW; Hillegonds DJ
    Anal Chem; 2009 Mar; 81(5):1901-6. PubMed ID: 19178149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey.
    Osmanlioglu AE
    J Hazard Mater; 2006 Sep; 137(1):332-5. PubMed ID: 16563616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A UK comparison for measurements of low levels of gamma-emitters in waste drums.
    Dean J
    Appl Radiat Isot; 2009 May; 67(5):678-82. PubMed ID: 19230687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.
    Taddei MH; Macacini JF; Vicente R; Marumo JT; Sakata SK; Terremoto LA
    Appl Radiat Isot; 2013 Jul; 77():50-5. PubMed ID: 23524230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of 14C in Swedish light water reactors.
    Magnusson A; Aronsson PO; Lundgren K; Stenström K
    Health Phys; 2008 Aug; 95 Suppl 2():S110-21. PubMed ID: 18617793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of 60Co from simulated spent decontamination solutions.
    Rashmi K; Sowjanya TN; Mohan PM; Balaji V; Venkateswaran G
    Sci Total Environ; 2004 Jul; 328(1-3):1-14. PubMed ID: 15207568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of NORM solid waste produced from the petroleum industry.
    Al Attar L; Doubal W; Al Abdullah J; Khalily H; Abdul Ghani B; Safia B
    Environ Technol; 2015; 36(9-12):1104-13. PubMed ID: 25358443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of zirconium (IV) molybdo tungsto vanado silicate as a novel inorganic ion exchanger in sorption of radionuclides.
    Zonoz FM; Ahmadi SJ; Nosrati SA; Maragheh MG
    J Hazard Mater; 2009 Sep; 169(1-3):808-12. PubMed ID: 19443117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes.
    Raghu G; Balaji V; Venkateswaran G; Rodrigue A; Maruthi Mohan P
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):571-8. PubMed ID: 18949474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DOSE ASSESSMENT FOR ATMOSPHERIC DISCHARGE OF LONG-LIVED RADIONUCLIDES IN NUCLEAR POWER PLANT DECOMMISSIONING.
    S C; Anand S; Bhargava P; Krishan J; Singh KDS; Kulkarni MS; Sharma DN
    Radiat Prot Dosimetry; 2020 Aug; 190(2):139-149. PubMed ID: 32626895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of
    Luo Y; Hou X; Qiao J; Zhu L; Zheng C; Lin M
    Anal Chem; 2022 Aug; 94(33):11582-11590. PubMed ID: 35948028
    [No Abstract]   [Full Text] [Related]  

  • 17. Decommissioning of a nuclear power plant: determination of site-specific sorption coefficients for Co-60 and Cs-137.
    Delakowitz B; Meinrath G
    Isotopes Environ Health Stud; 1998; 34(4):371-80. PubMed ID: 10089594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiological impact assessment for workers on treatment of radioactive spent resin from heavy water reactors.
    Lee U; Choi WN; Kim HR
    J Radiol Prot; 2019 Jun; 39(2):422-442. PubMed ID: 30703752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of radioactive contaminants and water treatment trials for the Taiwan Research Reactor's spent fuel pool.
    Huang CP; Lin TY; Chiao LH; Chen HB
    J Hazard Mater; 2012 Sep; 233-234():140-7. PubMed ID: 22841295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of cesium from fission radionuclides using resorcinol-formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers.
    Shady SA
    J Hazard Mater; 2009 Aug; 167(1-3):947-52. PubMed ID: 19303707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.