These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 24145069)
1. Role of DDL processes during electrolytic reduction of Cu(II) in a low oxygen environment. Brosky RT; Pamukcu S J Hazard Mater; 2013 Nov; 262():878-82. PubMed ID: 24145069 [TBL] [Abstract][Full Text] [Related]
2. Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay. Pazos M; Gouveia S; Sanroman MA; Cameselle C J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):823-31. PubMed ID: 18569291 [TBL] [Abstract][Full Text] [Related]
3. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. Jiang MQ; Wang QP; Jin XY; Chen ZL J Hazard Mater; 2009 Oct; 170(1):332-9. PubMed ID: 19464114 [TBL] [Abstract][Full Text] [Related]
4. Removal of multiple-metals from contaminated clay minerals. Li LY Environ Technol; 2006 Jul; 27(7):811-22. PubMed ID: 16894825 [TBL] [Abstract][Full Text] [Related]
5. Changes in metal availability during sediment oxidation and the correlation with the immobilization potential. Prica M; Dalmacija B; Dalmacija M; Agbaba J; Krcmar D; Trickovic J; Karlovic E Ecotoxicol Environ Saf; 2010 Sep; 73(6):1370-7. PubMed ID: 20605048 [TBL] [Abstract][Full Text] [Related]
6. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO; Baek MH; Kim DS J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of copper in contaminated sandy soils using calcium water treatment residue. Fan J; He Z; Ma LQ; Yang Y; Yang X; Stoffella PJ J Hazard Mater; 2011 May; 189(3):710-8. PubMed ID: 21454013 [TBL] [Abstract][Full Text] [Related]
8. Measurement of Cu and Zn adsorption onto surficial sediment components: new evidence for less importance of clay minerals. Wang X; Li Y J Hazard Mater; 2011 May; 189(3):719-23. PubMed ID: 21466918 [TBL] [Abstract][Full Text] [Related]
9. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water. Chen A; Lin C; Lu W; Ma Y; Bai Y; Chen H; Li J J Hazard Mater; 2010 Mar; 175(1-3):638-45. PubMed ID: 19913356 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey. Ahmed AM; Sulaiman WN Environ Manage; 2001 Nov; 28(5):655-63. PubMed ID: 11568845 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous reduction of nitrate and oxidation of by-products using electrochemical method. Li M; Feng C; Zhang Z; Lei X; Chen R; Yang Y; Sugiura N J Hazard Mater; 2009 Nov; 171(1-3):724-30. PubMed ID: 19608341 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the potential of indigenous calcareous shale for neutralization and removal of arsenic and heavy metals from acid mine drainage in the Taxco mining area, Mexico. Romero FM; Núñez L; Gutiérrez ME; Armienta MA; Ceniceros-Gómez AE Arch Environ Contam Toxicol; 2011 Feb; 60(2):191-203. PubMed ID: 20523977 [TBL] [Abstract][Full Text] [Related]
13. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. Suthar S; Nema AK; Chabukdhara M; Gupta SK J Hazard Mater; 2009 Nov; 171(1-3):1088-95. PubMed ID: 19616893 [TBL] [Abstract][Full Text] [Related]
14. The behavior of heavy metals in tidal flat sediments during fresh water leaching. Li Q; Liu Y; Du Y; Cui Z; Shi L; Wang L; Li H Chemosphere; 2011 Feb; 82(6):834-8. PubMed ID: 21131022 [TBL] [Abstract][Full Text] [Related]
15. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Hutchins CM; Teasdale PR; Lee J; Simpson SL Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical effects on uncontaminated kaolinite due to electrokinetic treatment using inert electrodes. Liaki C; Rogers CD; Boardman DI J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jul; 43(8):810-22. PubMed ID: 18569290 [TBL] [Abstract][Full Text] [Related]
17. [Impact of polymetallic mine (Zn, Pb, Cu) residues on surface water, sediments and soils at the vicinity (Marrakech, Morocco)]. El Adnani M; Rodriguez-Maroto JM; Sbai ML; Loukili Idrissi L; Nejmeddine A Environ Technol; 2007 Sep; 28(9):969-85. PubMed ID: 17910250 [TBL] [Abstract][Full Text] [Related]
18. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Chatterjee SK; Bhattacharjee I; Chandra G J Hazard Mater; 2010 Mar; 175(1-3):117-25. PubMed ID: 19864059 [TBL] [Abstract][Full Text] [Related]
19. Assessment of geochemical mobility of metals in surface sediments of the Santa Rosalia mining region, Western Gulf of California. Shumilin E; Gordeev V; Figueroa GR; Demina L; Choumiline K Arch Environ Contam Toxicol; 2011 Jan; 60(1):8-25. PubMed ID: 20480159 [TBL] [Abstract][Full Text] [Related]
20. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties. Boenigk J; Wiedlroither A; Pfandl K Aquat Toxicol; 2005 Feb; 71(3):249-59. PubMed ID: 15670631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]