These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24145317)

  • 41. Gas chromatographic investigation of the effects of hydrogen and temperature on the nature of the active sites related to CO adsorption on nanosized Au/gamma-Al(2)O(3).
    Gavril D; Georgaka A; Loukopoulos V; Karaiskakis G
    J Chromatogr A; 2007 Sep; 1164(1-2):271-80. PubMed ID: 17681519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Engineering catalytic contacts and thermal stability: gold/iron oxide binary nanocrystal superlattices for CO oxidation.
    Kang Y; Ye X; Chen J; Qi L; Diaz RE; Doan-Nguyen V; Xing G; Kagan CR; Li J; Gorte RJ; Stach EA; Murray CB
    J Am Chem Soc; 2013 Jan; 135(4):1499-505. PubMed ID: 23294105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides.
    Hereijgers BP; Weckhuysen BM
    ChemSusChem; 2009; 2(8):743-8. PubMed ID: 19588474
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spiers Memorial Lecture. Role of perimeter interfaces in catalysis by gold nanoparticles.
    Haruta M
    Faraday Discuss; 2011; 152():11-32; discussion 99-120. PubMed ID: 22455036
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An overview of dealloyed nanoporous gold in bioelectrochemistry.
    Xiao X; Si P; Magner E
    Bioelectrochemistry; 2016 Jun; 109():117-26. PubMed ID: 26781363
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold clusters alloyed to nanoporous palladium surfaces as highly active bimetallic oxidation catalysts.
    Li Y; Zhu E; Chen Y; Chiu C; Yu H; Huang X; Hicks R; Huang Y
    ChemSusChem; 2013 Oct; 6(10):1868-72. PubMed ID: 24039061
    [No Abstract]   [Full Text] [Related]  

  • 47. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation.
    Min BK; Friend CM
    Chem Rev; 2007 Jun; 107(6):2709-24. PubMed ID: 17564483
    [No Abstract]   [Full Text] [Related]  

  • 48. Enzyme-modified nanoporous gold-based electrochemical biosensors.
    Qiu H; Xue L; Ji G; Zhou G; Huang X; Qu Y; Gao P
    Biosens Bioelectron; 2009 Jun; 24(10):3014-8. PubMed ID: 19345571
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanosized Pt-Co catalysts for the preferential CO oxidation.
    Ko EY; Park ED; Seo KW; Lee HC; Lee D; Kim S
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3567-71. PubMed ID: 17252813
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CO Preferential oxidation promoted by UV irradiation in the presence of H2 over Au/TiO2.
    Dai W; Chen X; Wang X; Liu P; Li D; Li G; Fu X
    Phys Chem Chem Phys; 2008 Jun; 10(22):3256-62. PubMed ID: 18500403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atomic origins of the high catalytic activity of nanoporous gold.
    Fujita T; Guan P; McKenna K; Lang X; Hirata A; Zhang L; Tokunaga T; Arai S; Yamamoto Y; Tanaka N; Ishikawa Y; Asao N; Yamamoto Y; Erlebacher J; Chen M
    Nat Mater; 2012 Sep; 11(9):775-80. PubMed ID: 22886067
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation.
    Biemelt T; Wegner K; Teichert J; Kaskel S
    Chem Commun (Camb); 2015 Apr; 51(27):5872-5. PubMed ID: 25726946
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation.
    Liu Z; Jackson GS; Eichhorn BW
    Angew Chem Int Ed Engl; 2010 Apr; 49(18):3173-6. PubMed ID: 20340144
    [No Abstract]   [Full Text] [Related]  

  • 54. High throughput screening of low temperature CO oxidation catalysts using IR thermography.
    Cypes S; Hagemeyer A; Hogan Z; Lesik A; Streukens G; Volpe AF; Weinberg WH; Yaccato K
    Comb Chem High Throughput Screen; 2007 Jan; 10(1):25-35. PubMed ID: 17266514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CO2 Reduction to CO in Water: Carbon Nanotube-Gold Nanohybrid as a Selective and Efficient Electrocatalyst.
    Huan TN; Prakash P; Simon P; Rousse G; Xu X; Artero V; Gravel E; Doris E; Fontecave M
    ChemSusChem; 2016 Sep; 9(17):2317-20. PubMed ID: 27492905
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electronic modification effects induced by Fe in Pt-Ru-Fe ternary catalyst on the electrooxidation of CO/H₂ and methanol.
    Kim T; Kobayashi K; Take T; Nagai M
    J Oleo Sci; 2012; 61(3):127-34. PubMed ID: 22362143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Titania-Carbon Nitride Interfaces in Gold-Catalyzed CO Oxidation.
    Jiménez-Calvo P; Michel L; Keller V; Caps V
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61015-61026. PubMed ID: 34918899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the enhanced electrocatalytic activity of Pd overlayers on carbon-supported gold particles in hydrogen electrooxidation.
    Ruvinsky PS; Pronkin SN; Zaikovskii VI; Bernhardt P; Savinova ER
    Phys Chem Chem Phys; 2008 Nov; 10(44):6665-76. PubMed ID: 18989479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CO bond cleavage on supported nano-gold during low temperature oxidation.
    Carley AF; Morgan DJ; Song N; Roberts MW; Taylor SH; Bartley JK; Willock DJ; Howard KL; Hutchings GJ
    Phys Chem Chem Phys; 2011 Feb; 13(7):2528-38. PubMed ID: 21152570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.