These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 24145415)

  • 1. High-throughput imaging of neuronal activity in Caenorhabditis elegans.
    Larsch J; Ventimiglia D; Bargmann CI; Albrecht DR
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4266-73. PubMed ID: 24145415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans.
    Chokshi TV; Bazopoulou D; Chronis N
    Lab Chip; 2010 Oct; 10(20):2758-63. PubMed ID: 20820480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans.
    Ben Arous J; Tanizawa Y; Rabinowitch I; Chatenay D; Schafer WR
    J Neurosci Methods; 2010 Mar; 187(2):229-34. PubMed ID: 20096306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans.
    Cho Y; Porto DA; Hwang H; Grundy LJ; Schafer WR; Lu H
    Lab Chip; 2017 Jul; 17(15):2609-2618. PubMed ID: 28660945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal responses of C. elegans chemosensory neurons are preserved in behavioral dynamics.
    Kato S; Xu Y; Cho CE; Abbott LF; Bargmann CI
    Neuron; 2014 Feb; 81(3):616-28. PubMed ID: 24440227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans.
    Chronis N; Zimmer M; Bargmann CI
    Nat Methods; 2007 Sep; 4(9):727-31. PubMed ID: 17704783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments.
    Albrecht DR; Bargmann CI
    Nat Methods; 2011 Jun; 8(7):599-605. PubMed ID: 21666667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Odour concentration-dependent olfactory preference change in C. elegans.
    Yoshida K; Hirotsu T; Tagawa T; Oda S; Wakabayashi T; Iino Y; Ishihara T
    Nat Commun; 2012 Mar; 3():739. PubMed ID: 22415830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous recording of behavioral and neural responses of free-moving nematodes
    Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    STAR Protoc; 2021 Dec; 2(4):101011. PubMed ID: 34917983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Albrecht DR
    Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation.
    Thiele TR; Faumont S; Lockery SR
    J Neurosci; 2009 Sep; 29(38):11904-11. PubMed ID: 19776276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circuit mechanisms encoding odors and driving aging-associated behavioral declines in Caenorhabditis elegans.
    Leinwand SG; Yang CJ; Bazopoulou D; Chronis N; Srinivasan J; Chalasani SH
    Elife; 2015 Sep; 4():e10181. PubMed ID: 26394000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Larsen E; Lawler D; White H; Albrecht DR
    Methods Mol Biol; 2022; 2468():293-318. PubMed ID: 35320572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specification of chemosensory neuron subtype identities in Caenorhabditis elegans.
    Lanjuin A; Sengupta P
    Curr Opin Neurobiol; 2004 Feb; 14(1):22-30. PubMed ID: 15018934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale.
    Faumont S; Lockery SR
    J Neurophysiol; 2006 Mar; 95(3):1976-81. PubMed ID: 16319197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropeptide-Driven Cross-Modal Plasticity following Sensory Loss in Caenorhabditis elegans.
    Rabinowitch I; Laurent P; Zhao B; Walker D; Beets I; Schoofs L; Bai J; Schafer WR; Treinin M
    PLoS Biol; 2016 Jan; 14(1):e1002348. PubMed ID: 26745270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Multimodal Stimulation and Simultaneous Neuronal Recording from Multiple Small Organisms.
    White H; Kamara V; Gorski V; Busby M; Albrecht DR
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36939269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemosensory behavior of semi-restrained Caenorhabditis elegans.
    Faumont S; Miller AC; Lockery SR
    J Neurobiol; 2005 Nov; 65(2):171-8. PubMed ID: 16114028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of odor-receptor pairs in Caenorhabditis elegans reveals different receptors for high and low odor concentrations.
    Taniguchi G; Uozumi T; Kiriyama K; Kamizaki T; Hirotsu T
    Sci Signal; 2014 Apr; 7(323):ra39. PubMed ID: 24782565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback from network states generates variability in a probabilistic olfactory circuit.
    Gordus A; Pokala N; Levy S; Flavell SW; Bargmann CI
    Cell; 2015 Apr; 161(2):215-27. PubMed ID: 25772698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.