These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24145429)

  • 21. Microfluidic chip to interface porous microneedles for ISF collection.
    Takeuchi K; Takama N; Kim B; Sharma K; Paul O; Ruther P
    Biomed Microdevices; 2019 Mar; 21(1):28. PubMed ID: 30847695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical Simulation on the Response Characteristics of a Pneumatic Microactuator for Microfluidic Chips.
    Liu X; Li S; Bao G
    J Lab Autom; 2016 Jun; 21(3):412-22. PubMed ID: 25944840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computer-Aided Design of Microfluidic Circuits.
    Tsur EE
    Annu Rev Biomed Eng; 2020 Jun; 22():285-307. PubMed ID: 32343907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaling of pneumatic digital logic circuits.
    Duncan PN; Ahrar S; Hui EE
    Lab Chip; 2015 Mar; 15(5):1360-5. PubMed ID: 25591784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Socket with built-in valves for the interconnection of microfluidic chips to macro constituents.
    Yang Z; Maeda R
    J Chromatogr A; 2003 Sep; 1013(1-2):29-33. PubMed ID: 14604105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronics-free pneumatic circuits for controlling soft-legged robots.
    Drotman D; Jadhav S; Sharp D; Chan C; Tolley MT
    Sci Robot; 2021 Feb; 6(51):. PubMed ID: 34043527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.
    Wu CY; Lu JC; Liu MC; Tung YC
    Lab Chip; 2012 Oct; 12(20):3943-51. PubMed ID: 22842773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids.
    Srinivasan V; Pamula VK; Fair RB
    Lab Chip; 2004 Aug; 4(4):310-5. PubMed ID: 15269796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of dynamic chemical signals with microfluidic C-DACs.
    Chen L; Azizi F; Mastrangelo CH
    Lab Chip; 2007 Jul; 7(7):850-5. PubMed ID: 17594003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; SendiƱa-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays.
    Gonzalez-Suarez AM; Long A; Huang X; Revzin A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screw-actuated displacement micropumps for thermoplastic microfluidics.
    Han JY; Rahmanian OD; Kendall EL; Fleming N; DeVoe DL
    Lab Chip; 2016 Oct; 16(20):3940-3946. PubMed ID: 27713994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices.
    Chatterjee K; Graybill PM; Socha JJ; Davalos RV; Staples AE
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33561847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic abacus channel for controlling the addition of droplets.
    Um E; Park JK
    Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.