BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24145433)

  • 21. Evolutionary trace annotation of protein function in the structural proteome.
    Erdin S; Ward RM; Venner E; Lichtarge O
    J Mol Biol; 2010 Mar; 396(5):1451-73. PubMed ID: 20036248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Function prediction from networks of local evolutionary similarity in protein structure.
    Erdin S; Venner E; Lisewski AM; Lichtarge O
    BMC Bioinformatics; 2013; 14 Suppl 3(Suppl 3):S6. PubMed ID: 23514548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural clusters of evolutionary trace residues are statistically significant and common in proteins.
    Madabushi S; Yao H; Marsh M; Kristensen DM; Philippi A; Sowa ME; Lichtarge O
    J Mol Biol; 2002 Feb; 316(1):139-54. PubMed ID: 11829509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FLORA: a novel method to predict protein function from structure in diverse superfamilies.
    Redfern OC; Dessailly BH; Dallman TJ; Sillitoe I; Orengo CA
    PLoS Comput Biol; 2009 Aug; 5(8):e1000485. PubMed ID: 19714201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence and structure-based prediction of fructosyltransferase activity for functional subclassification of fungal GH32 enzymes.
    Trollope KM; van Wyk N; Kotjomela MA; Volschenk H
    FEBS J; 2015 Dec; 282(24):4782-96. PubMed ID: 26426731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity.
    Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW
    Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1.
    Bonneau R; Baliga NS; Deutsch EW; Shannon P; Hood L
    Genome Biol; 2004; 5(8):R52. PubMed ID: 15287974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    J Mol Biol; 2002 Apr; 317(4):541-57. PubMed ID: 11955008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical analysis and prediction of protein-protein interfaces.
    Bordner AJ; Abagyan R
    Proteins; 2005 Aug; 60(3):353-66. PubMed ID: 15906321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of detailed enzyme functions and identification of specificity determining residues by random forests.
    Nagao C; Nagano N; Mizuguchi K
    PLoS One; 2014; 9(1):e84623. PubMed ID: 24416252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.
    Mudgal R; Srinivasan N; Chandra N
    Proteins; 2017 Jul; 85(7):1319-1335. PubMed ID: 28342236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An accurate, sensitive, and scalable method to identify functional sites in protein structures.
    Yao H; Kristensen DM; Mihalek I; Sowa ME; Shaw C; Kimmel M; Kavraki L; Lichtarge O
    J Mol Biol; 2003 Feb; 326(1):255-61. PubMed ID: 12547207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues.
    Mayer KM; Shanklin J
    J Biol Chem; 2005 Feb; 280(5):3621-7. PubMed ID: 15531590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of subfamily-specific sites based on active sites modeling and clustering.
    de Melo-Minardi RC; Bastard K; Artiguenave F
    Bioinformatics; 2010 Dec; 26(24):3075-82. PubMed ID: 20980272
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting gene ontology functions from protein's regional surface structures.
    Liu ZP; Wu LY; Wang Y; Chen L; Zhang XS
    BMC Bioinformatics; 2007 Dec; 8():475. PubMed ID: 18070366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.
    Pai PP; Ranjani SS; Mondal S
    PLoS One; 2015; 10(8):e0135122. PubMed ID: 26261982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate specificity determinants of the methanogen homoaconitase enzyme: structure and function of the small subunit.
    Jeyakanthan J; Drevland RM; Gayathri DR; Velmurugan D; Shinkai A; Kuramitsu S; Yokoyama S; Graham DE
    Biochemistry; 2010 Mar; 49(12):2687-96. PubMed ID: 20170198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.