BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24145701)

  • 1. Miniature optical coherence tomography-ultrasound probe for automatically coregistered three-dimensional intracoronary imaging with real-time display.
    Li J; Ma T; Jing J; Zhang J; Patel PM; Kirk Shung K; Zhou Q; Chen Z
    J Biomed Opt; 2013 Oct; 18(10):100502. PubMed ID: 24145701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid intravascular ultrasound and optical coherence tomography catheter for imaging of coronary atherosclerosis.
    Li BH; Leung AS; Soong A; Munding CE; Lee H; Thind AS; Munce NR; Wright GA; Rowsell CH; Yang VX; Strauss BH; Foster FS; Courtney BK
    Catheter Cardiovasc Interv; 2013 Feb; 81(3):494-507. PubMed ID: 22566368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging.
    Yin J; Li X; Jing J; Li J; Mukai D; Mahon S; Edris A; Hoang K; Shung KK; Brenner M; Narula J; Zhou Q; Chen Z
    J Biomed Opt; 2011 Jun; 16(6):060505. PubMed ID: 21721799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trimodality imaging system and intravascular endoscopic probe: combined optical coherence tomography, fluorescence imaging and ultrasound imaging.
    Liang S; Ma T; Jing J; Li X; Li J; Shung KK; Zhou Q; Zhang J; Chen Z
    Opt Lett; 2014 Dec; 39(23):6652-5. PubMed ID: 25490644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology.
    Shimokado A; Kubo T; Matsuo Y; Ino Y; Shiono Y; Shimamura K; Katayama Y; Taruya A; Nishiguchi T; Kashiwagi M; Kitabata H; Tanaka A; Hozumi T; Akasaka T
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1785-1790. PubMed ID: 31175528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro.
    Goderie TP; van Soest G; Garcia-Garcia HM; Gonzalo N; Koljenović S; van Leenders GJ; Mastik F; Regar E; Oosterhuis JW; Serruys PW; van der Steen AF
    Int J Cardiovasc Imaging; 2010 Dec; 26(8):843-50. PubMed ID: 20396951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound.
    Jang IK; Bouma BE; Kang DH; Park SJ; Park SW; Seung KB; Choi KB; Shishkov M; Schlendorf K; Pomerantsev E; Houser SL; Aretz HT; Tearney GJ
    J Am Coll Cardiol; 2002 Feb; 39(4):604-9. PubMed ID: 11849858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma.
    Brown AJ; Obaid DR; Costopoulos C; Parker RA; Calvert PA; Teng Z; Hoole SP; West NE; Goddard M; Bennett MR
    Circ Cardiovasc Imaging; 2015 Oct; 8(10):e003487. PubMed ID: 26429760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated intravascular optical coherence tomography (OCT) - ultrasound (US) catheter for characterization of atherosclerotic plaques in vivo.
    Li J; Li X; Jing J; Mohar D; Raney A; Mahon S; Brenner M; Zhou Q; Patel P; Shung KK; Chen Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3175-8. PubMed ID: 23366600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Ex vivo assessment of coronary lesions by optical coherence tomography and intravascular ultrasound in comparison with histology results].
    Guo J; Sun L; Chen YD; Tian F; Liu HB; Chen L; Sun ZJ; Ren YH; Jin QH; Liu CF; Han BS; Gai LY; Yang TS
    Zhonghua Xin Xue Guan Bing Za Zhi; 2012 Apr; 40(4):302-6. PubMed ID: 22801308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrepancy between frequency domain optical coherence tomography and intravascular ultrasound in human coronary arteries and in a phantom in vitro coronary model.
    Kim IC; Nam CW; Cho YK; Park HS; Yoon HJ; Kim H; Chung IS; Han S; Hur SH; Kim YN; Kim KB
    Int J Cardiol; 2016 Oct; 221():860-6. PubMed ID: 27434362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current clinical applications of coronary optical coherence tomography.
    Kume T; Uemura S
    Cardiovasc Interv Ther; 2018 Jan; 33(1):1-10. PubMed ID: 28710605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First in-human evaluation of a novel intravascular ultrasound and optical coherence tomography system for intracoronary imaging.
    Akl E; Pinilla-Echeverri N; Garcia-Garcia HM; Mehta SR; Dan K; Kuku KO; Courtney BK; Sheth T
    Catheter Cardiovasc Interv; 2022 Feb; 99(3):686-698. PubMed ID: 34792273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimodality imaging of attenuated plaque using grayscale and virtual histology intravascular ultrasound and optical coherent tomography.
    Kang SJ; Ahn JM; Han S; Park DW; Lee SW; Kim YH; Lee CW; Park SW; Mintz GS; Park SJ
    Catheter Cardiovasc Interv; 2016 Jul; 88(1):E1-E11. PubMed ID: 25511369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy of OCT, grayscale IVUS, and their combination for the diagnosis of coronary TCFA: an ex vivo validation study.
    Fujii K; Hao H; Shibuya M; Imanaka T; Fukunaga M; Miki K; Tamaru H; Sawada H; Naito Y; Ohyanagi M; Hirota S; Masuyama T
    JACC Cardiovasc Imaging; 2015 Apr; 8(4):451-460. PubMed ID: 25797121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional optical coherence tomography versus intravascular ultrasound in percutaneous coronary intervention for the left main coronary artery.
    Miura K; Tada T; Shimada T; Ohya M; Murai R; Kubo S; Tanaka H; Fuku Y; Goto T; Kadota K
    Heart Vessels; 2021 May; 36(5):630-637. PubMed ID: 33389063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining IVUS and Optical Coherence Tomography for More Accurate Coronary Cap Thickness Quantification and Stress/Strain Calculations: A Patient-Specific Three-Dimensional Fluid-Structure Interaction Modeling Approach.
    Guo X; Giddens DP; Molony D; Yang C; Samady H; Zheng J; Mintz GS; Maehara A; Wang L; Pei X; Li ZY; Tang D
    J Biomech Eng; 2018 Apr; 140(4):0410051-04100512. PubMed ID: 29059332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography.
    Tu S; Xu L; Ligthart J; Xu B; Witberg K; Sun Z; Koning G; Reiber JH; Regar E
    Int J Cardiovasc Imaging; 2012 Aug; 28(6):1315-27. PubMed ID: 22261998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques.
    Räber L; Heo JH; Radu MD; Garcia-Garcia HM; Stefanini GG; Moschovitis A; Dijkstra J; Kelbaek H; Windecker S; Serruys PW
    EuroIntervention; 2012 May; 8(1):98-108. PubMed ID: 22580254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.