These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 24145716)
1. Atg18 lifts up from and lands on the vacuolar membrane mediated by phosphorylation of its propellers. Oku M; Tamura N; Sakai Y Autophagy; 2013 Dec; 9(12):2161-2. PubMed ID: 24145716 [TBL] [Abstract][Full Text] [Related]
2. Vacuole fragmentation depends on a novel Atg18-containing retromer-complex. Marquardt L; Taylor M; Kramer F; Schmitt K; Braus GH; Valerius O; Thumm M Autophagy; 2023 Jan; 19(1):278-295. PubMed ID: 35574911 [TBL] [Abstract][Full Text] [Related]
3. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. Tamura N; Oku M; Ito M; Noda NN; Inagaki F; Sakai Y J Cell Biol; 2013 Aug; 202(4):685-98. PubMed ID: 23940117 [TBL] [Abstract][Full Text] [Related]
4. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. Tamura N; Oku M; Sakai Y J Cell Sci; 2010 Dec; 123(Pt 23):4107-16. PubMed ID: 21045113 [TBL] [Abstract][Full Text] [Related]
5. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate. Efe JA; Botelho RJ; Emr SD Mol Biol Cell; 2007 Nov; 18(11):4232-44. PubMed ID: 17699591 [TBL] [Abstract][Full Text] [Related]
6. Atg18 function in autophagy is regulated by specific sites within its β-propeller. Rieter E; Vinke F; Bakula D; Cebollero E; Ungermann C; Proikas-Cezanne T; Reggiori F J Cell Sci; 2013 Jan; 126(Pt 2):593-604. PubMed ID: 23230146 [TBL] [Abstract][Full Text] [Related]
7. Role of Vac8 in formation of the vacuolar sequestering membrane during micropexophagy. Oku M; Nishimura T; Hattori T; Ano Y; Yamashita S; Sakai Y Autophagy; 2006; 2(4):272-9. PubMed ID: 16874085 [TBL] [Abstract][Full Text] [Related]
8. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. Obara K; Sekito T; Niimi K; Ohsumi Y J Biol Chem; 2008 Aug; 283(35):23972-80. PubMed ID: 18586673 [TBL] [Abstract][Full Text] [Related]
9. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Kotani T; Kirisako H; Koizumi M; Ohsumi Y; Nakatogawa H Proc Natl Acad Sci U S A; 2018 Oct; 115(41):10363-10368. PubMed ID: 30254161 [TBL] [Abstract][Full Text] [Related]
10. Atg21 regulates pexophagy via its PI(3)P-binding activity in Pichia pastoris. Tamura N; Oku M; Sakai Y FEMS Yeast Res; 2014 May; 14(3):435-44. PubMed ID: 24373415 [TBL] [Abstract][Full Text] [Related]
11. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. Nair U; Cao Y; Xie Z; Klionsky DJ J Biol Chem; 2010 Apr; 285(15):11476-88. PubMed ID: 20154084 [TBL] [Abstract][Full Text] [Related]
12. Methylglyoxal inhibits nuclear division through alterations in vacuolar morphology and accumulation of Atg18 on the vacuolar membrane in Saccharomyces cerevisiae. Nomura W; Aoki M; Inoue Y Sci Rep; 2020 Aug; 10(1):13887. PubMed ID: 32807835 [TBL] [Abstract][Full Text] [Related]
13. Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mukaiyama H; Baba M; Osumi M; Aoyagi S; Kato N; Ohsumi Y; Sakai Y Mol Biol Cell; 2004 Jan; 15(1):58-70. PubMed ID: 13679515 [TBL] [Abstract][Full Text] [Related]
14. Structure based biophysical characterization of the PROPPIN Atg18 shows Atg18 oligomerization upon membrane binding. Scacioc A; Schmidt C; Hofmann T; Urlaub H; Kühnel K; Pérez-Lara Á Sci Rep; 2017 Oct; 7(1):14008. PubMed ID: 29070817 [TBL] [Abstract][Full Text] [Related]
15. Assortment of phosphatidylinositol 3-kinase complexes--Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Obara K; Sekito T; Ohsumi Y Mol Biol Cell; 2006 Apr; 17(4):1527-39. PubMed ID: 16421251 [TBL] [Abstract][Full Text] [Related]
16. Membrane scission driven by the PROPPIN Atg18. Gopaldass N; Fauvet B; Lashuel H; Roux A; Mayer A EMBO J; 2017 Nov; 36(22):3274-3291. PubMed ID: 29030482 [TBL] [Abstract][Full Text] [Related]
17. PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris. Chang T; Schroder LA; Thomson JM; Klocman AS; Tomasini AJ; Strømhaug PE; Dunn WA Mol Biol Cell; 2005 Oct; 16(10):4941-53. PubMed ID: 16079180 [TBL] [Abstract][Full Text] [Related]
18. A kinase cascade on the yeast lysosomal vacuole regulates its membrane dynamics: conserved kinase Env7 is phosphorylated by casein kinase Yck3. Manandhar SP; Siddiqah IM; Cocca SM; Gharakhanian E J Biol Chem; 2020 Aug; 295(34):12262-12278. PubMed ID: 32647006 [TBL] [Abstract][Full Text] [Related]
19. Hrr25 phosphorylates the autophagic receptor Atg34 to promote vacuolar transport of α-mannosidase under nitrogen starvation conditions. Mochida K; Ohsumi Y; Nakatogawa H FEBS Lett; 2014 Nov; 588(21):3862-9. PubMed ID: 25281559 [TBL] [Abstract][Full Text] [Related]
20. Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Sudhakar R; Das D; Thanumalayan S; Gorde S; Sijwali PS Biochem J; 2021 May; 478(9):1705-1732. PubMed ID: 33843972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]