These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 24146008)

  • 1. Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles.
    Levitas VI
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120215. PubMed ID: 24146008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pre-stressing micron-scale aluminum core-shell particles to improve reactivity.
    Levitas VI; McCollum J; Pantoya M
    Sci Rep; 2015 Jan; 5():7879. PubMed ID: 25597747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Harnessing thermal expansion mismatch to form hollow nanoparticles.
    Jen-La Plante I; Mokari T
    Small; 2013 Jan; 9(1):56-60. PubMed ID: 23125049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spallation of Isolated Aluminum Nanoparticles by Rapid Photothermal Heating.
    Zakiyyan N; Mathai C; McFarland J; Gangopadhyay S; Maschmann MR
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55277-55284. PubMed ID: 36445833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.
    Farley CW; Pantoya ML; Losada M; Chaudhuri S
    J Chem Phys; 2013 Aug; 139(7):074701. PubMed ID: 23968101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-tattoo removal--a study of the mechanism and the optimal treatment strategy via computer simulations.
    Ho DD; London R; Zimmerman GB; Young DA
    Lasers Surg Med; 2002; 30(5):389-97. PubMed ID: 12116333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the Size Dependence of the Shell-Breaking Response of Micro/Nano Al Particles at High Temperature.
    Zhou Z; Chai L; Wang T; Jiang H; Bai Z; Yuan W; Sang J
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography.
    Gritti F; Guiochon G
    J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminium control of argon solubility in silicate melts under pressure.
    Bouhifd MA; Jephcoat AP
    Nature; 2006 Feb; 439(7079):961-4. PubMed ID: 16495996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.
    Gritti F; Horvath K; Guiochon G
    J Chromatogr A; 2012 Nov; 1263():84-98. PubMed ID: 23040978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model.
    Moghadasi MA; Nili-Ahmadabadi M; Forghani F; Kim HS
    Sci Rep; 2016 Dec; 6():38621. PubMed ID: 27941814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates.
    Wengeler R; Nirschl H
    J Colloid Interface Sci; 2007 Feb; 306(2):262-73. PubMed ID: 17109876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of particle properties on the wall region in packed capillaries.
    Bruns S; Stoeckel D; Smarsly BM; Tallarek U
    J Chromatogr A; 2012 Dec; 1268():53-63. PubMed ID: 23127807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates.
    Wengeler R; Teleki A; Vetter M; Pratsinis SE; Nirschl H
    Langmuir; 2006 May; 22(11):4928-35. PubMed ID: 16700577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.
    Di Sarli V; Di Benedetto A; Russo G
    J Hazard Mater; 2010 Aug; 180(1-3):71-8. PubMed ID: 20471163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Particle Combustion of Pre-Stressed Aluminum.
    Hill KJ; Pantoya ML; Washburn E; Kalman J
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.